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ABSTRACT
SLAC:
AN ALGORITHM FOR LOSSLESS AUDIO COMPRESSION
By
Reid Woodbury Jr.

Masters of Science in Computer Science

Lossless compression happens when a pattern can be described with symbols that
are only as big as needed at a given instant to uniquely and exactly represent each value.
Signals are a special case, as the number of bits needed to represent a value are often very
high, and also have the property that each symbol is closely related to the next. Signal
compression algorithms go an extra step to find the similarities between adjacent symbols
and only store the differences between what the real value is and what some prediction
scheme says the value should be.

Typically, compression algorithms examine symbols in a data stream each in
whole—whether those symbols are characters, bytes, pixels, or audio samples—and then
look at that symbol’s neighbors for some pattern or redundancy. This paper proposes an
approach that examines the data stream in larger pieces, treats those pieces as arrays of
bits where each row represents one symbol, and examines the arrays column by column

rather than one row at a time.
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Introduction

The consumer’s need for accurate representation of audio program material is
much less strict than that of professional listeners. Many algorithms have been developed
to carefully model a signal and throw out less important information based on users’ pre-
ferences and tastes. They are called /ossy algorithms. There are similar algorithms for
images too. We need a different type of compression algorithm to cover the case where
any loss of information would be unacceptable, whether that be for technical or aesthetic
reasons. These are called /ossless algorithms.

This paper focuses on audio signals used in the entertainment industry such as
music compact disks (CDs) and movie sound tracks. In general, a signal can be anything
that represents something in the real world; a sonogram, radar, radio, video, or even still
pictures. Lossless compression happens when a pattern can be described with symbols
that are only as big as needed at a given instant to uniquely and exactly represent each
value. Signals are a special case, as the number of bits needed to represent a value are
often as high as 32 bits (sometimes more), rather than the typical eight used for text and
executables, and also have the property that each instance (or symbol) is closely related
to the next. And, where text and executables are precise, a repeat of the same character or
word is exactly the same character or word. A signal can be say, a half-decibel quieter
than the original (values approximately 94% of the magnitude of the original) and not be
discernable from the original signal. Even trained listeners without a side-by-side com-
parison won’t be able to detect this change. Signal compression algorithms go this extra
step to find the similarities between adjacent samples and only store the differences be-

tween what the real value is and what some prediction scheme says the value should be.



These similarities can be calculated with some very complicated digital signal processing
(DSP) algorithms.

The consumer marketplace has shown a desire for storing large amounts of audio.
CD quality digital audio files are about 10.5 megabytes in size for every minute of audio.
This means there’s a need for 500 to 700 megabytes of storage for each CD in a collec-
tion. Doing the math, a portable player’s 30-gigabyte hard drive can hold about 50
uncompressed CD albums. The lossy algorithms can raise this to about 500 CDs with
only audio purists possibly detecting any loss of quality, or even a thousand with what
many people would consider acceptable quality.

Lossless algorithms would bring this number to at least 80 albums with no loss of
sound quality (no loss of information). Some reach average results as high as 150 albums,
depending on the musical or audio content. There are many programs written for doing
this and some will be examined here.

Typically, compression algorithms examine symbols in a data stream each in
whole—whether those symbols are characters, bytes, pixels, or audio samples—and then
look at that symbol’s neighbors for some pattern or redundancy. This paper proposes an
approach that examines the data stream in larger pieces, treats those pieces as arrays of
bits where each row represents one symbol, and examines the arrays column by col-
umn—down the side—rather than one row at a time. It will be called SLAC for “sideways

lossless audio compression.”

Audio vs. Data Compression

Professional audio engineers, sound editors, or music or film sound mixers are fa-

miliar with the term compression but they use it very differently. For them, “audio com-
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pression” means that the dynamic range, the difference between the loudest and softest
sounds, has been reduced. This is a critical step in the preparation of audio for the con-
sumer. Natural sounds have a far too wide dynamic range for typical playback. Many
electronic devices have been created to manipulate an electronic audio signal, each hav-
ing their own characteristic sound. Audio compression algorithms used to act on a digit-
ized version of an audio signal are often designed to mimic the characteristics of favored

electronic compressors. That type of compression will not be covered further.



Objective

Lossless audio data compression has been an interest of this author for many
years. As an understanding of the computing issues involved grew, the need to try out
some of these ideas also grew. This new algorithm, SLAC, will be discussed along with
the current state of lossless audio compression in general. Digital audio for consumers is
the focus, but digital audio is just a special case of signal processing. The techniques tried
so far, what their results seem to be, and some ideas for improving the output of the pro-
gram will be covered. Of course, improvements mean smaller output files as this is about
compression, and a faster running program. Techniques to maximize compression with
this new view will be explored. A set of sound files was found on a web site that analyzes
several lossless compression algorithms. These files will be examined with this algorithm
and recompiled versions of existing algorithms, with the results extending what was

found on that web site.!



Basic Data Compression Techniques

Quite often the most efficient way to represent a symbol for easiest access and
interpretation of what that symbol means is not the most efficient in the amount of space
used.” Today, the most common encoding of text is called UNICODE. There are many
variants for different languages and dialects. For demonstration’s sake we’ll talk about
the very similar and older ASCII (American Standard Code for Information Interchange).
It has the amazing property in that it uses the lower seven bits of an 8-bit byte to encode
the alphabet in... alphabetic order. This is a silly statement, but a common algorithm is
sorting, and the most common way to sort text is in alphabetic order. So it behooves us to
use an encoding in which the natural order corresponds to the order of the data it is to
represent. ASCII further applies a pattern to the letters and numbers to make them easier,
thus faster, to work with. For instance observe how letter case is represented for upper
and lower case “A”:

A=0 10 0001

a = 01100001
By simply masking off the bits in the box, or even the upper three bits, a sorting algo-
rithm that is to ignore letter-case need only continue as usual. And the numeric characters
(0-9) are represented so that the four most significant bits can be ignored and the re-
maining bits are stored in two’s complement encoding, which is the same way integers
are most often encoded. This way they can be interpreted as an integer with a minimum
of manipulation.’

With real world data, files will contain much redundancy and thus, wasted space.
For instance, we can easily see that files that contain only ASCII numbers would be

wasting (at least) half their space, as the four most significant bits aren’t needed. In
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regular text files there is rarely an equal number of each character so with more complex
encoding techniques a variable number of bits can be used to represent each character
with shorter strings of bits used for the characters that repeat most.” Patterns that repeat
can also be marked and pointed to later as that pattern reoccurs.

A key word that comes up in much of the literature on data compression is en-
tropy. The entropy E of a symbol is defined by the probability P of the symbol being used
(1.0 being all the time, 0.0 being none of the time, 0.5 being half the time):

E=-Plog, P .
The entropy of an alphabet is given as the sum of the entropies of the symbols in the al-
phabet. From this information we can do a statistical analysis of the data in a file and pre-
dict the best possible compression for the file.

Most often in the literature, the compression encoding type is considered to be
either statistical or dictionary. Others group them differently.®” This author considers
transforms to not be directly part of the compressing of data but useful in preparation of
the data. For instance, taking the delta-transform or relative encoding on a stream of 32-
bit floats may shrink the magnitude of the values stored in those floating-point variables
but they will still take up 32 bits until one of these encoding types is applied to the data.

An implementation of some sort will likely employ several of these techniques
tailored to best compress a certain type of data. One standard for FAXing documents en-
codes it with a predetermined table of statistics for the amount of white and black space
represented as run-length encoding (RLE), with these counts represented by a variable-
length code.® The use of that predetermined table obviates the need for a document to be

scanned twice on the transmitting side, or for the receiving side to build a table from the



received data in order to rebuild the image. It is important to know the needs of the data
before making a blanket rule of how to represent that data.

Often file types are built around an encoding. The file type TIFF (tagged image
file format) has a version of the RLE and LZW (Lempel, Ziv, and Welch; described later)
techniques as standard encoding options to make storage smaller. Files with these options

set will, of course, take longer to read and write than files without these processes.

Run-Length Encoding

Sound, picture, and even text files often have runs of repeating characters or sym-
bols. These can be spaces inserted to format text, a character or characters to indicate a
black sky in a picture, or integer zeros for silence between songs on a CD. Simple graphic
pictures with long expanses of the same color are well suited for run-length encoding. It
is considered a statistical encoding method but it’s described separately here because it
considers only data adjacent to the current value being examined. The remainder of the
file isn’t used except to determine the end of the run of this particular value. The statisti-
cal occurrences of other values in the file have no impact on how the current value is rep-
resented.

The trade off with run length encoding (RLE) is that it needs some kind of marker
to indicate if the next piece of data represents another run of symbols. This can be either
an escape character, which also needs a way to indicate that this character is to be taken
literally occasionally, or an extra bit can be added to each symbol that when set, could
indicate that this value is the length of the run of the previous symbol. In both cases care
must be taken to be sure that there are enough redundancies that the added bit on each

symbol or added character doesn’t actually make the result larger.



Statistical Encoding

Statistical techniques for compressing data work by replacing symbols repre-
sented by an equal-length code with symbols from a variable-length code whose lengths
are inversely proportional to their probability. Variable length codes only work if they
follow the prefix property. The prefix property holds that once a certain bit pattern has
been assigned as the code of a symbol, no other code can start with that pattern. Thus, no
pattern can be the prefix of another.” Ideally the shortest codes are then assigned to char-
acters with the greatest probability. These algorithms are also referred to as “entropy en-

coders.” The simplest variable length code to visualize is a unary code. A version is

shown here:
0 =0
1 =10
2 = 110
3 = 1110
4 = 11110

... and so forth. A count of zeros followed by a terminating “1” could also be used. One
good thing about this code is that we don’t need to know in advance how many different
values need to be encoded. This is because the numeric value indicates the count of 1’s to
use before we reach a zero.

But the statistics of a character matter for compression. It would be foolish to en-
codea 7 as 11111110 when there are no 5’s or 6’s needing to be represented with the
new code. Right away we can see we’d be better off encoding 7 as 111110 and save the
space. Even more importantly, a string of these unary bits can be assigned to any symbol,
such as the number 17, the letter Q, or even a string of characters like alphabet

soup.



Several techniques have evolved and been refined over the last sixty years or so.
This started with the work of Golomb, Rice, Shannon, and Fano. The most popular of
these algorithms is Huffman coding, which always produces the optimal prefix-code for a
given entropy.'® Rather than drawing out the steps, as is done in many texts, there is an
excellent web site with a Java applet by Woi Ang where one can watch a Huffman tree
built graphically, step by step at:
http://www.cs.auckland.ac.nz/software/AlgAnim/huffman.html#huffman anim.

The Huffman code is so good because it builds a proper prefix-code from the fre-
quency of symbols in a data set. This can be built for each file to be compressed (which is
time consuming) or can be a canonical code based on typical usage. A large amount of
standard text for a language can be examined by the programmer and a fixed Huffman
encode and decode tree can be written into an implementation of the algorithm. There is
also a technique of building the encode/decode tree as data is examined. This makes for
faster encoding and decoding. As the algorithm progresses through a file a tree is built
and the code is modified, as data is read and the frequency of the symbols changes. As an
interesting note, the Huffman algorithm will build a unary code if the statistics of the data
indicate that this would make the best encoding.

An important but difficult to understand statistical technique is arithmetic coding.
An oversimplification of this process starts by mapping the symbols to encode over the
interval [0,1), with the size of the sub ranges for each symbol proportional to their fre-
quency in the original file. When a sub range is used, it is broken into new set of sub
ranges proportion to the original range of [0, 1). This continues breaking down into
smaller and smaller pieces, each represented by a number of greater and greater preci-

sion. This can produce better results than Huffman encoding by representing a large
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Figure 1. Recursive mapping of a range. "’

number of input symbols, or even an entire file as one very large number, and that each
symbol, in effect, will have a different number of bits representing it at different mo-
ments. This is because the input symbol is represented by the range in which the stored
number falls, rather than the bits directly.

On decoding, the range in which the number appears determines what symbol it
represents, as each subsequent sub range determines each subsequent symbol. Let’s say
the stored value is 0.718, and a set of mappings where the three most numerous charac-
ters are represented by a, b, and c. The symbol a, having a probability of 0.5, is given the
range [0.5, 1); b, having a probability of 0.1, is given the range [0.4, 0.5); and ¢, having a
probability of 0.2, is assigned the range [0.2, 0.4). Figure 1 shows how it maps the first

four symbols of a set of data as a, b, c, a, etc.

Dictionary Encoding

Compression relies on files having redundancy. This redundancy need not only be
based on the entropy of the characters used in a language but also on strings of characters
repeating. A dictionary style algorithm will note where a pattern repeats and store a
pointer to that repetition. Storing a pointer requires that the output data use more bits to
represent a symbol so that we can discern when this symbol represents an original symbol

or represents a series of symbols that have already been seen.
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A popular algorithm (and the best until recently, see GZIP below) is LZW com-
pression, named after its developers Lempel and Ziv, with later modifications by Welch.
It works well with text and executable code.'* It looks at files as strings of eight-bit sym-
bols and outputs 12-bit symbols. A table with 4096 (2'%) positions is built as the input file
is read. The first 256 output values are mapped directly from the input values. As a char-
acter is found on the input, it and subsequent characters are checked against existing en-
tries starting at the end. If a match is found, the position of that match is written to the
output rather than that character. If not, the single character is written as a 12-bit symbol
and this pair is added to the table. As the table is built, the added “pair” can consist of a
character, or reference to a string of characters, plus the one additional character. If the

table fills up, it’s cleared and a new table is started.

Lossy Compression

It should be noted that this paper is primarily about lossless compression. There is
“lossy” compression, with popular forms being JPEG for pictures and MP3 for music.
These algorithms’ job is to find and throw out less important information to help make
the resulting files smaller. They also have settings that an end user can adjust when the
desired trade off between the resulting file size and the quality of the content have been

determined.

JPEG

As we will examine later, a typical first step for signal compression is to increase
the redundancy in the values representing a signal. A simple way to do this for audio, but
not the best, is to take the running difference, or delta transform on consecutive pairs of

values. A better way to correlate pairs of values, or pixels, for images when the desire is
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to throw out information, as in JPEG compression (Joint Photographic Experts Group), is
to map each pair’s values as x and y coordinates in a two-dimensional space, rotate the
result 45° toward the x axis, then read the new x and y values. This results in the y values
grouping around one common value, zero. As we’ve seen before this lends itself to better
entropy encoding. It also lends itself to better lossy compression as some of the bits to
represent the accuracy of these smaller magnitude values can be thrown out with a
smaller effect on the reconstructed image than if we hadn’t taken this step.'® This has the

visual effect of softening the edges of details in the image.

MP3

Besides the desire to store more music, widespread music sharing has increased
popularity of the MP3 file type, or more accurately called “MPEG-1 Layer-3.” This com-
plex algorithm and those like this are sometimes called perceptual compressors. (There
are many other perceptual encoding algorithms used for music and movies, and change
depending on delivery method. Some are more transmission friendly, while other have a
better sound quality.) It finds redundancy in material based on many psycho-acoustic
studies and concepts that are used to determine what information can be thrown away,
similar to the techniques used for JPEG. These algorithms break a signal into overlapping
pieces, analyze the frequency content of these pieces, and store that information. This
then allows the use of a psycho-acoustic technique called masking, as seen in Figure 2.
Masking is the property that a louder tone will mask the perception of quieter tones that

are close to it in frequency and time.
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Figure 2. Effects of masking. "

A feature of these algorithms is that their bit rates can be set in advance, so they

will only throw away the amount of data necessary to maintain that rate. They can choose

to include all, part, or none of these other frequencies as needed, or to use fewer bits for

marginal frequencies. These algorithms are also designed to pay more attention to (use

more bits with) frequencies around 4kHz, as the human ear is more sensitive to these

frequencies.
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Lossless Signal Compression Programs

There are several lossless audio compression programs. Two of them, WavPack
and FLAC (Free Lossless Audio Compression) were compiled locally for a proper com-
parison to the current incarnation of SLAC. GZIP was also tested for demonstrating the
difference from those programs optimized for audio. Where information could be found,
all of the signal compression algorithms use the same basic techniques (except for SLAC,
of course). These can be broken down in two steps: transform and encoding. Correlation
and prediction are both transform steps and both are used to shrink the magnitude of the
values stored. Smaller values are more likely to have larger entropy. This is important for
the encoding step. Encoding is then done with an entropy method. All programs, where
information was available, use variations of Golomb-Rice or Huffman algorithms, or
similar techniques of their own devising. FLAC adds the detection of long runs of abso-
lute silence (sample values of zero) and run-length encodes these.

This excerpt draws attention to the architecture of many lossless audio codecs:

* Blocking. The input is broken up into many contiguous blocks. [...] The
optimal size of the block is usually affected by many factors, including the
sample rate, spectral characteristics over time, etc. [...]

e Interchannel Decorrelation. In the case of stereo streams, the encoder will
create mid and side signals based on the [sum] and difference (respectively)
of the left and right channels. The encoder will then pass the best form of the
signal to the next stage.

* Prediction. The block is passed through a prediction stage where the
encoder tries to find a mathematical description (usually an approximate one)
of the signal. This description is typically much smaller than the raw signal
itself. Since the methods of prediction are known to both the encoder and
decoder, only the parameters of the predictor need be included in the
compressed stream. [...]

* Residual coding. If the predictor does not describe the signal exactly, the
difference between the original signal and the predicted signal (called the
error or residual signal) must be coded losslessy. If the predictor is effective,
the rc:,sidual signal will require fewer bits per sample than the original signal.

[...]"
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GZIP

Even though GZIP is not a signal compression program, per sé¢, it’s included as a
good standard program often used for other types of data. As good as LZW is and all of
the struggles with copyrights that are placed on it, it turns out that for most data GZIP
compresses better than LZW.' It’s a combination of an earlier algorithm, LZ77, which
uses a sliding window over the data to find duplications and redundancies, and the appli-
cation of a predetermined Huffman table. The algorithm uses this window, which is up to
32Kbytes long, to search backward from the current byte for the longest match. It limits
the length of the match and also takes the earliest match in order to produce the smallest
reference value. This helps with the entropy and improves the effect of the Huffman algo-
rithm. To improve execution speed, references to the past matches are placed in a hash

table.!’

Signal redundancy

In experiments, applying one of the simpler decorrelation techniques to a sound
file before applying GZIP always resulted in a smaller file than using GZIP alone. This
demonstrates how the requirements of compressing signals are different from other types
of data, as mentioned in the abstract. If a predictive transform (correlation algorithm; dis-
cussed later) is applied to the data, the change from symbol to symbol can become very
small. With the output from the delta transform, there will still be long sets of data where
it will look like the data from a transform of the slightly louder data. This is also more in
relation to how the data is perceived.

A program like GZIP, without a previously applied correlation transform, will see

even a small moment-to-moment change in loudness as a completely different set of data
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and never relate it to earlier versions of an otherwise identical waveform. Dictionary
methods aren’t going to be suited directly to signal compression.'® (See also “SLAC:
Manipulating the Signal: Possible Transforms: Pattern Matching”.)

Information in a signal is more dependent on how data in one moment is related
to data in the next moment. Defining a “moment” is an important part of understanding a

particular signal and how to compress it.

Transforms

Though transforms are not considered by this author to be a compression tech-
nique directly, transforms are important in the preparation of signal data before applica-
tion of one of the compression techniques given above. Transforms act on how data re-
lates to itself from one moment to the next, rather than the statistics taken and mapping
done of the member values as done in non-signal compression algorithms. Study of
lossless signal compression techniques shows that some transform of the data is done in
each algorithm with the precise techniques kept secret in the highly competitive, closed
source applications.

A transform can be as simple as a delta transform or running-difference, which
means we store the difference between successive samples. We could also say “we pre-
dict this sample to be the same as the last.” This works for signals as the values in succes-
sive symbols or values are closely related" (also see “SLAC: This Approach” in this
document). A slightly more sophisticated method, described later in this document, stores
the difference between the current sample and the linear prediction carried from the last

two samples. An algorithm can use recursive or convolution filters, or be as complex as
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the Fourier Transform, or more commonly, the discrete cosine transform (DCT and varia-
tions) which is most often used in lossy algorithms.
A paper from Hewlett-Packard covers many details of what it calls intra-channel

decorrelation and describes this part of the process this way:

The purpose of [this] stage of the typical lossless audio coder ... is to remove
redundancy by decorrelating the samples within a [block]. ... Most algorithms
remove redundancy by some type of modified linear predictive modeling of the
signal. In this approach a linear predictor is applied to the signal samples in each
block resulting in a sequence of prediction error samples. The predictor para-
meters therefore represent the redundancy that is removed from the signal and the
losslessly coded predictor parameters and prediction error together represent the
signal in each block. *°

17



Manipulating sound files

Programmers are less familiar with the way audio is stored than that of other files.

We’ll survey several here to familiarize the reader with these formats.

Sound Designer Il (Sd2f)

Of all sound file formats this one is the simplest to use. It was created and made
available by Digidesign, Inc. and was made public in hopes of it becoming a standard.
The metadata, the data that describes how the sound data is formatted, is stored in an ex-
tra part of the file made available by Apple Computer called the resource fork. This
leaves the data fork to contain only the actual audio data. If it’s desired to begin reading
audio from the start of the audio, the file pointer need only be put at the head of the file.

Here is an excerpt from the Digidesign specification®' document:

Sound Designer Il files store all sound samples in the data fork and all sound
parameters in the resource fork. This is extremely convenient for sound data
where the data fork may grow to a hundred megabytes or more. Regardless of the
size of the data fork you can add, delete, and modify sound parameters at will
without compacting the sound data or moving it around the disk (and extremely
time consuming procedure if the file is 100 MB). In addition, you may add your
own parameters to a file (as long as their resource types don’t conflict with
Sound Designer II’s) while allowing the file to be read by both Sound Designer
and your program.

The Apple resource fork can be thought of as a file system within a file. The exact
position of the data from the head of the fork need not be a concern of the programmer.
The OS handles reading and writing the labeled information. The labels are a combina-
tion of a four-character type code (i.e. ‘Sd2£f’, ‘RWlc’), a 16-bit integer ID, and an op-
tional name string. Any four byte-values, represented by extended ASCII characters, is

allowed in a four-character code, but Apple reserves the use of all lower-case letters.
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The format predefines several resource types, only three of which are of interest
here (and are required by the specification). The three are of type ‘STR ’ (note the space
at the end to make four characters) and this type is used to store short strings. String ID
1000 is the sample size in bytes, string ID 1001 is the sample rate and shown as a decimal
(44100.0000), and string ID 1002 is the number of channels. The use of strings makes the
data human readable, and Digidesign’s software always writes the resource name to the
file, increasing its readability. A track from an audio CD converted to this file type would
have a sample size of “2,” a sample rate of “44100.0000,” and the number of channels
would be “2.” An early Digidesign workstation actually used 20-bit samples padding the
last four places with zero-bits to make a whole three bytes.

The data fork is so simply laid out that it’s best to just quote from the specifica-

tion document:

The data of a Sound Designer Il file is stored in Two's Complement encoding.
Byte one of the data fork is the first byte of sound data. The sound data is orga-
nized as interleaved samples (if more then one channel) of either 8 or 16 [or 24]
bit samples depending on the value of the ‘sample-size” STR resource (see
below).

For example, a standard 16 bit stereo file would be organized as follows:
Left  Channel sample #1

Right Channel sample #1

Left  Channel sample #2

Right Channel sample #2

Left  Channel sample #3

Right Channel sample #3

etc...

Audio Interchange Format (AIFF)

Apple originally designed AIFF to be used for moving information between ap-
plications and platforms but thought it useful and flexible enough for use directly by an
application. It’s based on a standard developed by Electronic Arts**. Only the Macintosh

file system uses the two fork file type (data and resource) so all information is arranged
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and stored in the data fork of this file type. The complete specification is available from
Apple and many other sources. The design of the format is so clever and flexible that it’s
worth study in itself.

The file structure is based on a generic type called a chunk, which the documen-

tation describes with a C-like language thus:

typedef char([4] 1ID;
typedef struct {

ID ckID; // chunk ID

long ckDataSize; // chunk Size

char ckDatal]; // data in variable sized array
} Chunk;

The member called ckID of type ID is a four-character code. This is convenient
for humans and machines as four characters can be a useful abbreviation and a machine
can read it as one native 32-bit value. The member called ckDataSize indicates the
number of bytes in the array ckData. This size does not include the size of the members
ckID and ckDataSize, which totals eight. The specification for a chunk can include
other nested chunks and the chunk type can be unioned with any other structure of data
the programmer wishes to code. Chunks can be in any order, so the first eight bytes need
to be used as-is so a program can determine what the data is and how big it is, and calcu-
late where the next chunk starts (if not end-of-file).

The AIFF file specification makes some alterations to this nested chunk system by

defining a special outermost chunk called the form chunk or container chunk and uses the

layout:
typedef struct {
ID ckID; // always ‘FORM’
long ckSize; // always size of file minus 8
ID formType; // always either ‘AIFF’ or ‘AIFC’

char chunks [];
} ContainerChunk;
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The chunks member is where the list of other chunks and nested chunks are
placed. The three required chunks are called the Version Chunk, the Common Chunk,
and the Sound Data Chunk. Each have the four-character IDs of ‘FVER’, ‘COMM’ and
‘SSND’ respectively, and can have only one of each. The Version Chunk was added on
the change from the AIFF to AIFC type so that future changes could be made to the file
structure without having to change the four-character file type code again (from AIFC to

something else). Their structures look like this:

typedef struct {
ID ckID; // ‘EVER’ for AIFC files

long ckDataSize; // always 4
unsigned long timestamp; // 0xA2805140 (version as date)
}FormatVersionChunk;

for the version information,

typedef struct {

ID ckID; // always ‘COMM’

long ckSize; // always 18 for AIFF

short numChannels;

unsigned long numSampleFrames; // == samples/channel

short sampleSize; // bits per sample

extended sampleRate; // roughly a 10 byte float

// below added for AIFC, makes struct variable sized

ID compressionType; // registered 4-char code

pstring compressionName; // human-readable type name
}CommonChunk;

to hold the audio data format, and

typedef struct {

ID ckID; // always ‘SSND’
long ckSize; // the size of soundData + 8
unsigned long offset; // rarely used...
unsigned long blockSize; // ...set to zero
unsigned char soundDatal];

}SoundDataChunk;

to hold the sound data itself.
The sound data in the soundData member is in the same arrangement as the

sound data in the “data fork™ of the Sound Designer II file type above. Note that AIFF
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stores the depth of each sample in bits where the Sound Designer II type uses bytes. If a
non-multiple of eight bits is used for a sample zero bits are added on the right (LSBs) to
pad it to the next 8-bit boundary.

The file type AIFC extends the AIFF type to include compressed audio data®. A
program needs to check the compression type ID in the new Common Chunk to see if it
understands this compression type, if any. (The compression type could be set to
‘none’.) Compression type codes should be registered with Apple to be sure there is no

conflict with other codecs.

Resource Interchange Format (WAVE)

This format was created jointly by Microsoft Corporation and IBM Corporation,
and is very similar to the AIFF format as it is also based on the original Electronic Arts
Interchange File Format.** The primary difference between this format and AIFF is that a
WAVE file uses the Intel byte order and AIFF uses the Motorola byte order to represent
numbers and audio samples. The four-character codes used to describe the different
chunks are also different from the AIFF format and the structure and nesting of the vari-
ous chunks is different.

The first four bytes of a WAVE file are ‘RIFE’ and stand for Resource Inter-
change File Format. The specification also has a file type of ‘RIFX’ where the bytes are
stored in Motorola byte order. Then the next four bytes make an unsigned integer indi-
cating the number of bytes in the rest of the file. The WAVE “Format Chunk” corre-
sponds to the AIFF “Common Chunk,” and the WAVE “WAVE Data Chunk” corre-

sponds to the AIFF “Sound Data Chunk.”
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ID3

The ID3 tagging system is a standardized and flexible way of storing information
about an audio file within itself to determine its origin and contents. The information may
be technical information, such as equalization curves, as well as related meta information,
such as title, performer, copyright etc.”” Use of these tags has become very common in
files created by consumer music librarian programs like Apple’s iTunes. Professional
software for creating MP3 files also often has fields for entering this additional informa-
tion. It was designed so that it could be added to any audio file and merely be ignored if
the program reading the file doesn’t understand it. Even thought the AIFF file format al-
ready has space for textual information, ID3 tagging was added by creating an ID3 chunk
type ‘ID3 ’ and placing all the ID3 tags there.

ID3 tags are mentioned here because they are important additional information for
identifying a file. This information occupies such a small percentage of the file that they
do not need to be addressed as part of the compression. In fact, they should be left as is to
help with further identifying the contents of a compressed file without decompressing or

decoding first.
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SLAC
Audio Editing & The Shape of the Waveform

The launch of cheaper, professional sound processing cards for personal comput-
ers in the early 90’s was a tremendous advantage for smaller music and film production
facilities, and for individual freelancers and hobbyists. Processing power and creative
flexibility could now reach the hands of the average user. Professional quality audio here
means that an audio channel, as an electrical signal, is sampled or measured 44,100 times
a second and 16 bits is used to store each sample as a two’s complement, signed integer.
This is still the format of the standard audio CD. Before that, digital audio in personal
computers was typically sampled and stored in 8-bit samples (one byte per sample) taken
at between 8000 and 22,000 times a second.

From that point on, seeing the waveform of the audio signal by using software to
access the card and manipulate the audio files was as common as—perhaps more com-
mon than—hearing the sound itself (see Figure 3). It was apparent immediately to this
user that there was lots of white space above and below the peaks of the waveform, or
zeros, used in representing a sound. An understanding of how audio is represented in
digital form soon followed and with that a sense that there must be a better way to repre-
sent the data with storage requirements being so high. Figure 3 shows almost 1.5 mega-

bytes of data in its approximately 16 second length.
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0:20 0:22 0:24 0:26 0:28 0:20 0:32 0:34

Figure 3. Portion of an audio file shown in audio
editing software.

It became part of the sound editors’ wisdom to not bother compressing digital
audio with off-the-shelf compression programs (such as Stufflt) as one would with other
computer data when archiving or backing up a project. Space reductions of 50% are con-
sidered a typical average for most data, with text files reducing to as little as 10% of their
original size. Sound files, on the other hand, typically only compressed to 95% of their
original size... hardly worth the time to compress and decompress the file which were
generally very large and time consuming to handle to begin with.

It should be noted that that ratio of 95% was found in a casual test performed in
1994 with Stufflt, a generally free compression program for the Macintosh computer
platform. It can be seen in Appendix E that the compression ratios are better now. Also
note that the current version of gzip is used in that table and it gives better results than
Stufflt.

Occasionally sound files would be examined with a hex-editor and patterns would
be noticed in the data. Quite often every other byte was seen to be zero and these were

noted to be quiet passages. This author’s casual study revealed that standard compression
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programs are tailored for text, thus the very small desirable results for text files, and not
working as well on data where, for instance, every other byte could repeat.

At the time, it was assumed that the values in an audio file were mostly random
with some weighting to smaller magnitude numbers. But the values in an audio file aren’t
random in their placement except for the sound of some disbursement of noise. As stated
earlier, one sample of audio is generally closely related to the value next to it. An idea
struck this author early on to transform the audio file by saving only the difference be-
tween pairs of samples, often called a delta-transform or difference engine. Applying
Stufflt to this transformed file resulted in a compressed file that was about 70% of the
original size (even better with gz1ip, see Appendix E). Later, the technique one author
calls “delta encoding™® was found and is often used as part of a signal compression
algorithm.

Class work for this degree introduced me to several computing concepts and algo-
rithms that otherwise would have been considered too difficult. Comp 222 Computer Or-
ganization introduced Huffman encoding and showed how it can be used to assign shorter
bit patterns to more common symbols. This also encouraged me to look again at a Macin-
tosh ToolBox (system API) routine called PackBits, which does run-length encoding on a
sequence of bytes (not bits as the name implies) to see if something could be done with
that.

By just looking at the bits in an audio stream, it was decided that beyond the most
significant bits staying the same for a large number of samples, less significant bits
seemed to change at random, or at best, there would not be enough weight given to a sub-

set of symbols to favor shorter strings of bits over longer ones. Study of others’ attempts
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show that an audio signal or other signals can be manipulated to favor smaller values.
Where this is good for symbol-by-symbol encoding, it also increases the length of a run
of the same bit in the left columns, which kept run length encoding as a more favored
approach for this author. For a while, doing something like a Huffman encoding had been
set aside until research for this paper revealed that most of the algorithms use a version of
Huffman encoding.

After playing with some ideas in January of 2005 it was decided to “Google” for
more information and a very good website was found where Robin Whittle*’ and an-
other®® compare in great detail several lossless audio compression programs, several of
which have source code available (FLAC, WavPack, Monky’s Audio, True Audio).
Whittle made the original WAVE files he used for testing available on his web site so it
was decided to also use those files in testing this algorithm. FLAC and WavPack were
chosen for local testing. Reasonable comparisons can be made and conclusions drawn
without repeating all of the tests with the other algorithms by extrapolating from the chart

on Whittle’s web site.

This approach

Compression of digitized signals in general, whether lossy or lossless, takes ad-
vantage of the feature where one sample or one pixel is closely related to its neighbors.
Suppose a signal has been digitized into signed 16-bit integers. We can visualize this as
an array of bits where each row is a sample. Say there’s an array of samples starting at
some value (see Table 1a with runs of 2, 4, and 8 in boxes) and count up one for each
sample. Notice that starting on the right column we can see that the bits alternate every

other row, then have run lengths of two in the second column, and have run lengths of
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0000001000111110

00000000101 0[0fofolo

000000001 010/0jojoj1 0000001010001000
000000001010/0jofL0 0000001001101001
000000001 010|001 0000001011010111
000000001010/0[Llolo 0000001011011110
000000001 010[0f1jo[1 0000001010110011
000000001010[0[1]0 0000001100001101
000000001 010[011[1 0000001110001010
000000001 010[Tlojojo 0000001101110011

(a) (b)

Table 1. The numbers 160-168 (a) and excerpt from audio file (b), both in binary.

four in the third. You’ll notice that most of the columns are correlated; that is, they have
the same value throughout.

Notice this similar behavior in the short audio selection in Table 1b. The most sig-
nificant bits are on the left and the least on the right. The bits in a column, primarily the
left, repeat vertically. Intuitively, it can be seen here that runs of zero-bits or one-bits in a
column are very common, so simple run-length encoding would be the most appropriate
to use. Quiet passages in the program material or even the space between peaks of a
waveform have lots of repeats. (Table 1b shows data from a quiet passage.)

The question becomes what is the best way to represent this data. Varying the
number of columns examined at a time is considered. Each grouping requiring its own
variation of the data structures.

It was taken a priori to start with the bits examined in pairs: 16™ & 15" column
first (leftmost, most significant bit is the 16th), then the 14" & l3th, etc. Other quantities
and combinations of bits should be examined and tested. Two at a time were chosen after
much thought (not experimentation, see Table 4 on page 28) as it seemed to be the most

efficient way to group information.
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Research on this paper led to the discovery that SLAC’s method of examining the
bits in a data set is similar to taking the bit-planes of an image. Different planes of bits in
an image also show varying amount of correlation.”” SLAC could easily be adapted to the

lossless compression of images too.

The data types
Standard types

Over the decades, computers have had several groupings of bits used to represent
some kind a symbol like a Roman character or an Arabic number, but now having a byte
be eight bits as the core to represent one of these symbols is the standard. (The Unicode
format has changed that, but this is a tangential issue.) From there grouping bytes in
powers of two are used to create larger symbols. In the C programming language there is
the “short integer” (or “short”, 16 bits) and “long integer” (or “long”, 32 bits). There’s

also the “long long” at 64 bits in length that won’t be used here.

Additions for audio files

A convention for naming larger data types in audio files by Digidesign, Inc. will
be used here. These types are variable in size, so these sizes are stored as part of a sound
file to define what kind of data is stored and how it is to be interpreted. These terms are
also used to define other sized pieces and types of data in various places such as audio
CDs and electronic music keyboards. Clarity is needed here to avoid confusion with these
similar uses of the same terms.**
One slice or one instance of time of one channel of audio is called a “sample” and

is typically one, two, or three bytes in size and interpreted as a signed integer in two’s

complement form. Other types can be used for a sample such as floats and longs but if
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00000110010011110000011110010101
[00000111J101111000000101111001000
00001010101110010000111010001101
[0000111100001101J0000111000001000
00010010010000000000110100100010
00010011111000100000110001111110
[00010011100111110000110001100111]
00010010011011110000110100001100
00010010011010010000110011110011

Table 2. Excerpt of audio bit stream with boxes around a byte,
sample, and frame, respectively.

used at all they are for storage as the hardware to convert an analog signal to digital is
generally converting it to integers of no more than 24 bits. Older personal computer
hardware typically used 8-bit samples, the CD (Compact Disk) uses 16-bit samples, and
pro-audio workstations (typically) use 24-bit samples.

A “frame” is one time-slice across all channels. Stereo, or two channels, will have
2 samples per frame and quadraphonic sound would have four samples per frame. The
channel specifications for film sound of “5.1” and “7.1” would need six and eight sam-
ples per frame, respectively. A “7.1” channel, 24-bit recording would need 24 bytes per

frame.

Data types for this algorithm

Two more data types will be used in this algorithm: a “block” and a “chunk”. A
block will be a maximum of 2'° frames in size and will remain this size throughout a file
except for the end of the file where the size of the last chunk is the number of frames in
the file modulo the chunk size specified for the algorithm. The reason for 2'> will be

come apparent below.
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typedef struct zeroRepeat { typedef struct bitRepeat { typedef struct bitlLiteral {
short usePattern:1; Byte usePattern:1; Byte usePattern:1;
Byte useliteral:1; Byte wuseliteral:1;
Byte pattern:2;
short count:15; Byte count:4; Byte count:6;
} zeroRepeat; // 0x } bitRepeat; // 10 Byte bits[64];
} bitlLiteral; // 11

Table 3. The three chunk structures shown without extended comments.

The chunk will be one to 65 bytes long (see Table 3). These are pieces of encoded
audio, each chunk representing some variable amount of audio data. The names were
chosen because a “block™ seems to suggest a uniform size like a “concrete block” and a
“chunk” suggests a variable size like a “chunk of chocolate”. This is a different use of the
term “chunk” from the Electronic Arts specification used at the basis for the AIFF and
WAVE file types.

The chunk type is a union of three structures. In order to decode the data the first
two bits of the byte are used to determine which of the following structures to use. Since

the structures would never be used to indicate a run of zero, every value is offset by one

like this:

00000000 =
00000001 =
00000010 =
00000011 =

SN

.. etc.

Ox - Zero Repeat Chunk

This structure is used to store the count where a run from 17 to 2" zero-bit pairs
have been found in this pair of columns through this block of frames. The first bit of the
chunk union being a zero, counting left to right, indicates the next 15 bits are to be used

as the count of zero bit pairs:
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typedef struct zeroRepeat {

short usePattern:1; // must be O

short count:15; // 32768 possible values, or 2715
} zeroRepeat; // size = 2 bytes

This is quite common with quieter passages of sound. A “short” can be used instead of
this structure as values of 2'° or less (remember, values are offset by one) have the left

most bit set to zero.

10 - Bit Repeat Chunk

A run of 4 or 5 to 16 bit pairs have been found in this pair of columns. (The “4 or
5” is explained in “bit literal”.) This can be any of the four combinations of two bits, in-
cluding ‘00°.

The first bit of the chunk union being a 1 means to use this pattern, a 0-bit in the
second position means to repeat this pattern, and the third and fourth bits store the pattern
itself. The last four bits make the repeat count (maximum 2°). The bits of the pattern to
repeat are stored where they are as they will have to be moved in most cases to be placed
back into position on decoding. Then the last four bits representing the count don’t have

to be shifted to be used; the other bits can just be masked off:

typedef struct bitRepeat {
Byte usePattern:1; // must be 1
Byte uselLiteral:1; // must be O

Byte pattern:2; // 00, 01, 10, 11
Byte count:4; // 16 possible values, 274
} bitRepeat; // size = 1 byte

11 - Bit Literal Chunk

The run of 1 to 64 bytes are to be used as is, no repetitions. Ones in the first two
bits of the chunk union indicate this storage type. The last six bits are used as the count (1
to 2%). Each byte will then hold the bit pairs in a pair of columns for four samples. A “re-

peat run” of four will be stored in a “bit literal” if we’re currently filling that data type
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and it’s not already full rather than switch to another chunk type. Since each byte can
store four pairs of bits, the number of samples represented can be as high as 256. This
data type could potentially add 128 bytes to represent a pair of columns literally as op-

posed to storing this data with out any counting.

typedef struct bitLiteral {
Byte usePattern:1; // must be 1
Byte useliteral:1; // must be 1

Byte count:6; // 64 possible values, 2764
Byte bits[64]; // each stores 4 pairs of bits
} bitLiteral; // size range from 2 to 65 bytes

Manipulating the Signal

These are transformations to put similar patterns of bytes/bits next to each other in
a recognizable pattern for run length encoding. Research is showing that the real trick to
doing lossless audio compression is to do some kind of manipulation to skew the data
into a form that lends itself to patterns that are meaningful to the known lossless com-

pression algorithms.

Complement and Rotate

It can be seen here a priori that runs of 0-bits in a column can be made to be by
far the most common, so run-length encoding would be the most appropriate to use. It is
easy to coerce the long runs of 1-bits in columns crossing negative sample values into
zeros by taking the one’s-complement of all but the sign bit of those negative sample val-
ues, thus guaranteeing that quiet passages in the program material or even the space be-
tween peaks of a waveform will have lots of zeros (see Table 4).

Taking the one’s-complement of a sample, except for the sign bit, keeps most of
the upper bits from changing when there are only a few bits changing across zero, then

left rotate by one. This puts the sign bit, which is about as active as the least significant
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Normal bit representation Same data with one’s-complement

in excerpt of audio in file. and rotate.
000[00]10101010000 00[00]101010100000
000[0010101001100 0000101010011000
000[0010010100001 00/00100101000010
000[0001011111100 0000010111111000
0000001010100011 00[00010101000110
000[0000010110111 00/00000101101110
11111)11100101010 0000000110101011
111j1110010110101 > 00/00011010010101
1111110101010001 00/00010101011101
1111110111011100 0000010001000111
11111j11011011100 00[00001001000111
000[0000010101010 00/00000101010100
1111111100110111 00/00000110010001
0000000111101110 0000001111011100

Table 4. One’s-compliment except sign of negative values, then rotate.

bits (LSBs) with the LSBs. Remember the signal is constantly changing and taking the
running difference has the effect of hiding slow changing values leaving only the quickly
changing values.

Once a block of frames residual code has been found by some correlation algo-
rithm it may be desirable to find the maximum number of bits used in the samples. This
number of bits can be encoded at the start of the output block, five bits give us a maxi-

mum of 32 values, rather than using up 16 bits for every pair of columns of zero bits.

Correlation and Prediction

Initially, only applying a delta transform was used in this algorithm. It’s easy to
understand and runs very quickly. The difference between samples makes more of the
numbers smaller. This could potentially add another bit, but this would only happen for
sections with very loud (high amplitude) high frequency program material. The worst
cases for CD audio could be 32,767 — (-32,768) = 65,535 and (-32,768) — 32,767 =

-65,535 where each would take 17 bits to represent accurately. On the other hand this is
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very easy to calculate as simple subtraction of neighboring pairs of numbers is needed
while encoding and addition while decoding.

After some research WavPack was found to use, at its fastest setting, a slightly
more involved equation. It’s still very fast and its results are given in Appendix E. The
equation is the difference of the current value minus the last value (stopping here would
be only taking the delta) plus the previous delta:

out, =in, — (inn_1 + (inn_l —-in,_, ))

So, this means we are estimating that the current value will be as much different
from the last value as the last value was different from the one before it. The algorithm
performs the transform in place in memory by reading the buffer from the end to the be-
ginning, substituting zeros for the values when the index needs to extend before the
beginning of the buffer.

Correlation between the channels of a stereo pair must also be considered. Pri-
marily monophonic program material will be very similar in both channels and therefore
considered to have redundant information. Resolving this requires taking the sum and the
difference of the two channels. After processing, primarily monophonic material will be
strong in the new sum channel, and the difference channel will be very quiet, therefore
containing more and longer runs of zeros. Each block is tested to see if it needs to be left
in LR (left-right) form or put in SD (sum-difference) form. Normal stereo files will either
be unchanged or improve the compression possibilities by taking the SD of the audio file.
Taking the SD will hurt the compression results for program material that is primarily

heavy in one channel.
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This could also potentially add another bit to the sample. This will happen for
signals that go above +£2" in each of the channels for (16-bit samples). To return back to
left and right channels, sum the data in SD for the left channel and take the difference for
the right, the output must be divided by two which can be done quickly by an arithmetic
bit-shift to the right. In these equations S is the sum signal, D is difference with

S=L+R,
D=L-R;
so going back,

- LRI LR
2

R LHRALR)

which is shown with the original left and right substituted for S and D.

Encoding

Data is loaded in blocks of 2'° frames because this is the maximum value that can
be represented with 15 bits. Thus the maximum number of zero-bits in a column and the
reason for the design of the “zero repeat” chunk type. Since each correlation transform
can require another bit to properly represent the data, all samples are promoted to longs
so0 as to not over flow the storage of those numbers. (Eight-bit samples need only be
promoted to shorts, the next native type larger.) If, say the 17" and 18" bits remain zero
in a 16-bit sample after the transforms the only cost is the time to count the pattern and
two bytes in the output file representing that this column of bits is all zeros. The majority
of values being smaller far outweigh the occasional value that needs more bits to be accu-

rately represented.
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Next, one or more decorrelation algorithms are applied to the block and a flag is
set in the output stream. Each block can have a different algorithm applied. Part of the
analysis is to determine which algorithm or combinations of algorithms will produce the
best results. The program tests if interchannel decorrelation is necessary. The decode step
is faster as it only needs to choose the algorithm indicated by the flag. The last step be-
fore encoding is to one’s-complement each sample is and rotate it to put the sign bit on
the right, as shown before in Table 4.

It was also considered that this file type could be used for streaming audio, thus
the need to identify the start of a new block without having to start at the beginning of the
file. It was determined that three sequential zero bytes would never occur as part of the
algorithm and this is used to signal the start of a block. It should be noted that streaming
broadcasting software requires audio to be encoded at a constant bit rate, which this is
not.

For each block in the file, write three 0-bytes, then one byte with the correlation
flags. Next save the size of the block (the last block might be short) as a short integer.
Then for each pair of bit columns in the bit array, step through the entire block as indi-
cated starting with the second state in Figure 4.

The working of the state machine in Figure 4 can be described like this: Scan for
matching bits by marking where we are and grab a copy of the current pair of bits, then
count the number of frames this pattern repeats in this pair of columns. If the repetition
pattern is two zero-bits and there are more than 16 in a row, then save to the output file
the count of zero-pairs in the “zero repeat” structure, which is the same as using a (posi-

tive) short integer. Runs of other bit patterns longer than 16 will have to be stored in
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bitLiteral not full
. 5 ts found write byte to bitLiteral full _ [write bitLiteral
setup biL ierl scan for < repeals TOUR—»| bitl iteral struct struct to file
and write byte .
<4 repeats found matching bits
P tostruct 5-16 repeats found

>16 zeros found

write bitLiteral
struct to file

write bitRep
4-16 repeats found _,\ to file

write three
zero-byte start marker,

one byte correlation flags,
and two byte

length of block

scan for

matching bits

>16 zeros found

‘\ write zeroRep
to file

write biLiteral
struct to file

Figure 4. State diagram for encode algorithm.

multiple “bit repeat” structures, but not if there are 17 to 19 in the count. This will be-
come clear below.

Other than long runs of zero-bit-pairs, repetitions of any pattern of pairs of bits
with counts of four or five to 16 will be stored in the “bit repeat” structure. If runs are
longer than 16 a new “bit repeat” structure will need to be used. This structure will never
be used to store counts of less than four. So if the count modulo 16 is less than four then
that amount will be stored in the next data type.

If the run is three or fewer, then four pairs of bits are copied from the next four
frames using the “bit literal” structure. When the structure is full, or a scan indicates a
different structure should be used next, it is written to the output buffer. Repeating pat-
terns of only four pairs of bits are also written to this structure—if it already exists—be-
cause switching to the “bit repeat” structure also only takes one byte giving no space ad-
vantage. It could also require the immediate restarting of the “bit literal” which has as
much as an extra byte for every 8 bits saved, adding potentially 1/3 more to the size of

the output than an unprocessed file, in the worst case.
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Code for saving the “bit literal” structure needs to be just after the pattern count-
ing is done. If a run of three or fewer is found it’s either added to the existing “bit literal”
structure or a new “bit literal” structure is set up. If there is a long enough repeating pat-
tern found and a “bit literal” structure is in use then that “bit literal” structure is saved to
the output buffer before writing the count of the current pattern to the output file as a “bit

repeat” or “zero repeat” structure.

Decoding

The compressed data can be read from the file in any size piece at a time. The cur-
rent Macintosh file system (this programmer’s system of choice) is most efficient if file
reads are in 4k-byte chunks so the compressed file is read in multiples of that. The de-
coding of the data can proceed one byte at a time using the form of a state machine. The
first two bits of each byte are used to determine to which state we advance. The current
state is held in a variable that is tested by a switch-case construct. Not shown is a counter
that returns the machine back to state one. The numbers in Figure 5 actually correspond
to the byte number in the block we are examining. The transition labeled “10” goes back
to the same state because the code to handle this condition is placed directly where it’s
detected without changing the state variable. Actually changing states may be less
confusing and may produce just as good compiled code given the current state of
optimizing compilers.

The frame counter is tested to see if that pair of columns in the bit array have been
completely set for that block to indicate when we move to the next pair. When all the

pairs of columns are done, the entire block is written to the output file and the state ma-
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non-zero found

2. secondZero

non-zero found
non-zero found

third zero found

zeroRep

4. corrFlags
5. blockLenl
6. blockLen2
not done

Figure 5. State diagram for decode algorithm.

chine is told to restart or exit depending on whether there is more data in the compressed
file.

The machine states are identified by what we are looking for, so at the very be-
ginning the state is set to “firstZero” as we are looking for the first zero byte of three that
identifies the start of a block. When found it switches to the state “secondZero”. If not
found it keeps looking (this could be a stream rather than the start of a file) by switching
back to looking for the first zero-byte that will mark the start of a block. The next byte
contains the flags for what correlation algorithms were used, then two bytes are used as
the short integer that describes the length of the block and are copied to the frame size
variable in the two states “blockLen1” and “blockLen2”. When that is done we set the
state to “nextChunk” and start interpreting the chunks.

Why is the length of a block read in two steps? This is because there is a chance

that the first byte of the short integer may be the last byte in the input buffer filled from
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the last time the compressed file was read. The algorithm needs to be prepared to wait for
the input buffer to be refilled before reading the next byte.

The state “nextChunk” signals we’re looking for the next chunk to interpret. Now,
if the first bit is a zero—the byte masked to show only the first two bits be visible can
have a 0x00 or 0x40—then we grab this byte as the high byte of a short and set the state
to “zeroRep” to indicate we’re looking for the second byte of the zero-repeat structure.
Once that’s found we switch back to “nextChunk”.

While in “nextChunk”, if the first two bits are “10” (0x80) then the next two bits
are saved as the pattern to repeat and that pattern is repeated the number of times saved in
the last four bits.

Lastly, if the first two bits are “11” (0xCO0) then we put the last six bits into a
counter to show how many of the next bytes to write out explicitly and switch to state
“literalRun”. We stay in “literalRun” until the counter has been decremented to zero and
we then switch back to “nextChunk”.

The output buffer could be overrun when the bitLiteral structure is written to it. A
non-multiple of four frames could have been counted by the zeroRepeat or the bitRepeat
structures. So even if there’s only one literal pair of bits to write it will write four pairs. It
is easier to code and faster running to declare a buffer with three extra frames at the end
than to constantly check for the overrun.

The state diagram is re-started by counters that are not shown or exited com-

pletely when the end of file flag is found by the function reading the file.
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Storage format

The file format for storage of the output of this algorithm is based on the AIFC
file format. The file format also allows for any type of compression to be used and can be
any standard type or new type. It’s up to an application as to whether it can handle that
type or not. Meta data beyond sample rate, size, and number of channels can be copied in
total to an AIFF style chunk. This prevents the need to understand the meaning of all the
other metadata when coming from non-AlIFF files. Of course if the original file is any
type of AIFF or AIFC file then it makes sense to just copy all meta-data to the new file
without change. Copying from the Sound Designer II format would require some special

effort, as metadata is stored in the Macintosh resource fork.
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Analysis

One audio CD was chosen for testing because of its familiarity to the author and
its variety of selections. It’s a demonstration CD put out by the company Briiel & Kjer in
1989 to show off their brand of microphones. This author has used this CD extensively
for subjective testing of other parts of audio systems. The album includes a variety of
pop, jazz, and many classical selections, along with sound effects and test signals. It was
found to be useful that all of the selections were recorded with microphones from the
same manufacturer, all of which are either a small or large diaphragm model of the same
design. Where musical and performance styles vary widely the sound quality remains
consistent from cut to cut.

The web site “Lossless audio compression”™" provided the inspiration to follow
through with this lossless compression idea. On referring to it recently, it was discovered
that Whittle had added the audio he’d used in his testing, making it available to download
as WAVE files. This solved the problem of making comparisons to work he’d already
done. Both sets of audio were used in testing as this writer wanted to see results on audio
that he was familiar with and wanted to use data to make meaningful comparisons to
Whittle’s work. Whittle’s web page also refers to test files which he did not include for
download and the B&K CD has suitable selections on it. On that site Whittle gives a
short description of his sound files including their source with reference numbers and
average volume level.

The time needed to process a file was timed with a shell script that was set up to
step through them. Originally the intention was to use StuffIt instead of gz ip to compare

with this author’s previous experience of compression of digital audio. There is no com-
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t!/bin/sh
for i in “1ls "$1" | sed -e 's/ /:/g'"
1o
i="echo $i | sed -e 's/:/ /g'
echo $i
#time -p nice -n -20 cp "$1sim™ "s2"
#time -p nice -n -20 gzip -c "$1$i"™ > "$2/$i.gz"
#time -p nice -n -20 gunzip "$1S$i"
#time -p nice -n -20 slac "S$1$i" "$2"
#time -p nice -n -20 slacd "$1si™ "s2"
#time -p nice -n -20 slacwp "$1S$i" "s2"
#time -p nice -n -20 slac -d "S$1s$i" "$2"
#time -p nice -n -20 flac -0 --totally-silent "$1S$i"
#time -p nice -n -20 flac -8 --totally-silent "$1$i"
#time -p nice -n -20 flac -d --totally-silent "$1$i"
#time -p nice -n -20 wavpack -f "$1$i"
#time -p nice -n -20 wavpack -h "$1$i"
time -p nice -n -20 wvunpack "$1S$i"
echo ""
lone

Table 5. Shell script used for testing.

mand line version of Stufflt and it was desired to keep the timing framework consistent
between the tested algorithms.

In the shell script in Table 5 the UNIX sed utility in the second line is there to
change spaces into colons because the Macintosh file system allows file names with
spaces and disallows colons, but a shell script’s “for” statement uses spaces as a delimiter
between items to process and will break a path in the wrong place. The fourth line
changes the colon back to a space so the desired process can find the named file. The
script takes source and destination directory paths as parameters. Both SLAC and cp
need source and destination parameters as they both either need a new name for the file
or a destination directory. gz ip options were used to create new files from the original
sound files rather than deleting the originals.

It was the desire of the writer to use open source algorithms since compiler opti-
mization could be made similar across all programs thus eliminating one variable in the
behavior of the programs. Both FLAC and WavPack were compiled from source code on
a 1.67GHz PowerBook running MacOS X 10.4.5 (gcc 4.01). The algorithms were run

on that laptop with the sound files read from and written to the laptop’s internal hard
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drive. A working version of this author’s algorithm was also compiled with gcc so it
could also be used in the same timing script as the other algorithms. Primary work and
debugging was done in Metrowerks Codewarrior, but it’s not clear how well code op-
timization compares between Codewarrior and gcc, so gcc was used to keep down the
possible variations. Macintosh ToolBox calls were adapted to the UNIX programming
style rather than taking the time to rewrite them.

Timing was found to be very inconsistent between runs of any of the algorithms,
varying upwards of 20% from run to run. It was determined that the cause of this was the
fact that the host OS is a preemptive multi-tasking OS that could interrupt the algorithm
at any time for other housekeeping. The OS is also known to have algorithms that cache
and optimize executables®® so one pass through the set of files was repeated in reverse
order to check for that influence. Nothing beyond the earlier noted variation in processing
time was noticed.

Later tests were re-run with the UNIX utility called nice to give priority to the
tested program. Negative numbers for the “-n” option mean to be less nice to other
running programs, giving priority to the current program. The most stable performance
from run to run was found when each program was given a “nice” value of -20 and the

shell script executed from a new shell started with a “nice” value of -10:
sudo nice -n -10 sh

with most performance time averages staying within 10% of each other.

Table of results

The results shown in Appendix E need some explanation. All files were in AIFF

format with their sizes shown in bytes. The program cp is the UNIX utility to copy files.
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It’s here to show the overhead a plain copy imposes. Time is always in seconds and every
column labeled “encode” or “decode” is the time in seconds to encode or decode the file.
The “t/M” column is the time normalized to process one minute of audio with this
equation

n=t/(s/10584000),
where 7 is the normalized time, ¢ is the total time to process on that file, and s is the
original file’s unprocessed size. This size was chosen because half (or all, in the case of
cp) of each process moves the original amount of data. The unlabeled columns after the
“encode” and “decode” columns are the normalized times for those processes, too.

The main column group titles are mostly self-explanatory. “Delta” refers to the
delta transform. In the script in Table 5 the programs slac, slacd and slacwp
correspond in the tables below to s1ac with no transforms, s1lac with delta, and slac
with WavPack’s simplest decorrelation transform. The rest show their command line
options, generally run twice using the fastest setting and then the strongest setting. The
very last foreshortened columns are WavPack’s strongest option with the files done in

reverse order to check the effect of the OS caching commands.

Screen shots

Since this approach to signal compression was discovered by visually looking at

the shape of the signal, views familiar to sound editors are shown in Appendix A.

Waveform

The term “waveform” is used for a time versus amplitude view of a sound file.
The images here are screen shots of each selection of audio displayed in a ProTools

“session” file. The x-axis is measured in time and is set to show the entire length of the
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file no matter what the actual length of the file is. The timing marks were also captured
for reference and perspective. It’s assumed from experience with this software that each
screen pixel width is an average (not peak) of the signal’s positive values and average of

its negative values for the length of time the pixel spans.

Spectrum

The term “spectrum” is used for a frequency versus amplitude view of a file. The
spectrum for each file was taken over only about ten seconds of program material at what
was thought to be a representative section of the whole file. The motivation for this was
as a time saver and also knowing the utility taking the spectrum would show the
maximum values, so only a section with a strong signal was needed.

The software is a demonstration version of the Waves Audio Ltd. software plug-
in called “PAZ” and it was set to take RMS values. It is thought that as the RMS value
for a signal is considered to more closely represent it’s perceived loudness™ and that this
correlates to compression results. This is because a single peak in the signal could be con-
strued as being representative of the program material, but one loud peak in the signal

would have little effect on the compression of an otherwise quiet passage.

Stereo correlation

This part of the Waves plug-in is a more elegant version of what audio engineers
did by taking a feed of the left and right program material and connecting it to the y and x
inputs, respectively, of an oscilloscope. Sensitivity was adjusted to show the typical
“ball-of-string” pattern, depending on the program material, but typical for reverberant
material. A vertical line indicates left-channel only program material and a horizontal line

indicates right-channel only program material. Program material that is identical in both
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channels is shown as a line with a slope of positive one. A well-rounded ball-of-string
pattern means that the program’s material is well spread out in space and will seem to
surround the listener.

The plug-in modifies this in several aesthetic ways but the information is the
same. First, it tilts the display so that monophonic or center panned program material ap-
pears as a vertical line. Left and right program material show as slopes of negative and
positive one, respectively. The scale of the display has been made to be logarithmic rather
than normal linear view on an oscilloscope. It also has a peak hold function and averages
the signal causing it to look more like a spiked ball rather than a wad of string.

In the following screen shots the vertical grey band in the images in the left col-
umn are a selected region of approximately ten seconds in length. This region was then

used to generate the frequency response and stereo correlation images on the right.
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Conclusion

The results are encouraging but the open source programs work much better for
compression. SLAC does seem to have the edge on speed, performing better than the
otherwise faster program, WavPack, with the same correlation algorithm. The future
experiments mentioned below seem to be warranted.

Timing information was later gathered from the original Codewarrior compiled
version of SLAC and was found to be comparable to the gcc compiled code. The effort
to compile versions of the other algorithms locally in addition to SLAC may not have

been necessary.
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Future Experiments
Possible Transforms

Rather that just using delta encoding a more sophisticated approach could be
used. It must be kept in mind that different transforms may add a bit or more to the
resolution of the signal.

Some other transforms include linear predictive coding, wavelets, and discrete co-
sine transform. All of these have floating point and integer versions. The literature con-
tains many and more sophisticated methods. Something simple may be more important
than more data efficient algorithms as speed of processing is also a consideration when
applying hardware to encode and decode the data.

All techniques need to predict a value only from previous values, or at least in the
same direction as they are decoded. This way a transformed value can be derived from

known values.

Pattern Matching

A better way of applying a running difference or delta to the signal might be to
recognize a fundamental (as in harmonic fundamental) frequency and subtract the previ-
ous cycle from the current. This is similar to the LZW algorithm except that an exact
match shouldn’t be sought. It might be made to match all but the lower two or three bits
and store a pointer to the pattern and the residual of the difference. The problems with
this are determining what the fundamental frequency for a block is and in allowing for

changes in that frequency.
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Another possibility is to use a version of a dictionary method like LZW but again,
to only match to within a few least-significant bits, then code the reference chunk and

residual bits of the current set of symbols minus the reference chunk.

Splines

Several past points, or samples, can be used to determine a value based on spline
curves. Earlier testing by this writer for splines to be used in decimation and interpolation
algorithms showed that splines aren’t good at representing signals, but the idea is to get
closer to the actual next value with the simplest possible calculations. One of the spline

techniques may prove to deliver a small residual code with a minimum of calculations.

Tunable Filter

A block can be tested for its dominant frequency. Then a band-pass filter can be
tuned to that frequency and its output used to predict the next value with the difference
from the actual value being stored. It may be useful to pair this with the output of the
delta engine.

For that matter, a simple FFT (fast Fourier Transform) could be passed over a
block of data and a handful of frequencies with their intensities could be encoded at the
start of a block. This can be thought of as using a small amount of storage to indicate

some redundancy. These frequencies are then used in the decorrelation step.

1-bit slices
In this first version of the algorithm it was assumed that the columns of bits would

be best examined in pairs. The sign bit (most significant) is bit-rotated to the right (least
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significant) position so it is grouped with bits that will be changing approximately as of-
ten, leaving the leftmost bits to be changing the least.

After discovering the degree of importance that correlation is to the success of a
lossless compression algorithm, and that there are many stronger algorithms than the
delta transform, it seems that examining only one column of bits at a time may prove to
be better. This would require only two structures and obviate the need of the rotate step in
the complement and rotate step. While encoding, the algorithm can scan the sign bit col-
umn first and then continue on with the other columns in any order.

The “zero repeat” chunk would be used as is—but, of course, it would be only re-
ferring to a run of one column in the bit array rather than two, and would continue to re-
fer to counts of 17 to 2" zeros. The other would be a modified version of the “bit literal”
chunk. The first bit set to 1 would indicate that this structure is to be used and the next
seven bits used to indicate the number of the next bytes to interpret literally. The structure

would look like this:

typedef struct bitLiteralOne {
Byte usePattern:1; // must be 1

Byte count:7; // 128 possible values
Byte bits[64]; // each stores 8 bits from column
} bitLiteral; // size ranges from 2 to 129 bytes

Now each instance of the new “bit literal” structure can hold twice the number of
bits as the 2-bit “bit literal” structure. A situation where two entire columns of bits must
be encoded literally would now only cause an extra 64 bytes to be inserted. This is an-
other thing that may make this structure better: output of the current encode algorithm

using the two bit structure often has many consecutive “bit literals.”
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Lossy compression

A lossy form of this same algorithm could apply a certain amount of slew rate
limiting, by limiting loud high frequency signals. This would let the running difference
values stay smaller, but may be an objectionable form of data reduction.

Even better, use the example set in WavPack where two files are generated after
the encoding. One file can be used by itself as lossy playback, or with the proper decoder,
play both files where the second contains the residual error information, thus recon-

structing the original signal completely.

Lossless with Another Lossy

As an experiment, convert a full fidelity, AIFF file to some lossy format. Then
convert that small lossy file to a new AIFF file. Now subtract, sample by sample, the new
transcoded AIFF file (with all its inaccuracies from passing through the lossy encoding)
from the original file and call the new file the “residual” file. Next apply one of these
compression techniques to the residual file. The combination of the sizes of the lossy file
and the residual file may be the smallest lossless result yet. These two files could be

woven together into one file.
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Appendices

A Screen shots
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B Header for 2-bit scan

II177711177777777777777777777777777777777/777777777777777777777/777777777777777777777777777777777777777777777777777777
/*

These are the structures used to gather 2 bits at a time.

*/

#ifndef _H_RWLc2bit
#define _H_RWlc2bit
#pragma once

const SInt32 chunkMult =8 * 4096; // =32768, should be 4k aligned for best performance on 0SX
const SInt32 maxBlock = 32768; // 2A15; This is the number used to govern the maximum size
// of the "block".

// ALl vdlues are converted to a long int before examination.
//const long columnMask = 0b0000OAV000AV0000000000000000011 ;
const SInt32 columnMask = 3;

const SInt32 maskSize = 2;

#pragma options align=mac68k

typedef struct zeroRepeat {

UIntl6 usePattern:1; // @ here means to use this whole structure (don't use pattern)
UIntl6 count:15; // amount to use '@Q'; @ means one, 1 means two, 2 means three, etc., max=32768
} zeroRepeat; //  Counts of <=16 will never be used. Those will fit in bitRepeat.

typedef struct bitRepeat {

Byte usePattern:1; // 1 here means to use this whole structure (use a pattern)

Byte useliteral:1; // @ here means to use the next two bits as pattern

Byte pattern:2; // bit pattern to repeat; 00 01 10 11

Byte count:4; // amount to use pattern; @ means one, 1 means two, 2 means three, etc., max=16

} bitRepeat;

//typedef struct bitlLiteralData {
// Byte pl:2;
// Byte p2:2;
// Byte p3:2;
// Byte p4:2;

//} bitlLiteralData; //  CAN'T USE IN STRUCT BELOW. Compiler pads struct boundary to even address!!!!
typedef struct bitlLiteral {
Byte usePattern:1; // 1 here means to use this whole structure (must be a one, use pattern)
Byte useliteral:1; // 1 here means to use these next members (must be a one, spell out each literally)
Byte count:6; //  number of literal bytes (4 pairs of bits); @ means one, 1 means two, 2 means three, etc.
Byte bits[64]; // up to 64 of these bytes, corresponding to pairs from 256 samples

} bitLiteral;
#pragma options align=reset

// Flag definitions set true for correlating process applied to block.

const char deltaFlag = 0x01 << 0;
const char sumDifFlag = @0x@01 << 1;
const char wpFlag = 0x01 << 2;
const char anotherFlag = @0x@01 << 3;

// certainly more to come...

#endif // _H_RWlc2bit
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C Encode

I117777117777777777777777777777777777777777777777777777/7777777777777777777777777777777777777777777777777777777777777
void
RWLcEncode: :Process ( FSSpec &inSrcSpec, FSSpec &inDestSpec )
{
L1177711777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777
// set up source struct and open source file
SoundFile sourceFile ( inSrcSpec );
sourceFile.Open(fsRdPerm);

// set up destination structure
SoundFile  destFile(inDestSpec);

// check for enough space on destination drive,

// return with error if not (set flag)
FileInfoPB srcInfo ( inSrcSpec );
if ( !destFile.IsSpaceAvailable(srcInfo.GetSize() + 102400) ) // 100k free space
{
mDiskFull = true;
SysBeep(@);
return;

¥
// create destination file, same type as source, with QuickTime Player as the creator
destFile.CreateAndOpen('TVOD', saveAsType,

sourceFile.SampleSize(), sourceFile.SampleRate(), sourceFile.Channels(), 'RWLc' );

longsChans = sourceFile.Channels(); // copied out for readability

#if TEXT_OUTPUT

unsigned long debugCount = 0;
unsigned long lastIndex = 0;

bool bLitLastSaved = false;
unsigned long bLitDebugCount = 0;
char theBitString[64];

ofstream textFile;
textFile.open("RWlc.txt", ios::ate);
#endif
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// cdlculate buffer sizes for reading from sources and write to destination
SInt32 framesRead;

SInt8 *pufferln = new SInt8[maxBlock * sourceFile.FrameSize()]; // does this automatically clear the space?
SInt32 *bufferLR = new SInt32[maxBlock * sChans];

SInt32  *bufferSD = new SInt32[maxBlock * sChans];

// Worst case says output buffer needs to be 65/64ths (+1.5%) of the input

// plus 12.5% (per bit for 8-bit) for the correlating algorithms.

SInt32 outSize = maxBlock * sourceFile.FrameSize() * 2;

Byte *bufferOut = new Byte[outSize];

L11777717777777777777777777777777777777777777777/7777777777777777777777777777777777777777777777777777777777777777
// while we can read one block of source data, run process, and write to file
while ( (framesRead = sourceFile.ReadFrames((void *)bufferIn, maxBlock)) != @ )

{
#if TEXT_OUTPUT
textFile << "\nNew block started (#" << (SInt32)debugCount++ << ").\n";
#endif
SInt32 *bufferLong = bufferLR; // This will point to one of the above depending on the outcome of SumDiff.
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// convert all to 32 bit ints (for now even 8-bit files which only need to be up converted to 16-bit)

// This is to make room for any additional bit places generated by our correlation algorithms
// 20-bit samples have the right most 4 bits set to zero. Shift so the smallest magnitude is 1.
SInt32 sl;

SInt32 ib=0;
switch (sourceFile.SampleSize())

{
case 8:
for(sl=0; sl<(framesRead * sChans); sl++)
bufferLong[sl] = bufferIn[sl];
break;

case 16:
SInt16 *shortCast = (SIntl6 *) bufferlIn;
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for(sl=0; sl<(framesRead * sChans); sl++)
bufferLong[sl] = shortCast[sl];
break;

case 20:
for(sl=0; sl<(framesRead * sChans); sl++)

// take the long pointed to by 'ib', then arithmetic shift to the right (keeps only the left 2.5 bytes)
bufferLong[sl] = *((SInt32 *)(bufferIn+ib)) >> 12;
ib += 3;

¥

break;

case 24:
for(sl=0; sl<(framesRead * sChans); sl++)

// take the long pointed to by 'ib', then arithmetic shift to the right (keeps only the left 3 bytes)
bufferLong[sl] = *((SInt32 *)(bufferIn+ib)) >> 8;

ib += 3;
¥
break;
default:
// some error report
break;
¥
// This sets the number of bits to examine minus the size of the mask.
// Each massaging of the stream adds a bit significance to each sample.
// We don't need to examine all 32 bits of the temp buffer. The extra bits are just there to catch the overflow.

long maskLimit = sourceFile.SampleSize();

// clear output buffer so bit-wise OR's work
for (SInt32 b=0; b<outSize; b+=8)
*(UInt64*)&bufferOut[b] = OLL; // This could leave up to the last 3 bytes uncleared.

// put a 3 zero-byte marker for the start of the block, this pattern never occurs as part of the compression
//*(UInt32*)&bufferQut[@] = OL; // Actudlly write 4 zeros. This insures the forth byte is cleared for the flags.
// this was cleared above.
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// Correlating algorithms!

// take running difference on each channel

//

//
//

for ( SInt32 d = (framesRead*sChans)-1; d >= sChans; d-- )

bufferLong[d] -= bufferLong[d-sChans];

bufferOut[3] |= deltaFlag;
maskLimit++;

// difference from the last difference plus the last value (like wavpack 'fast')
for ( SInt32 d = (framesRead*sChans)-1; d >= sChans*2; d-- )
bufferLong[d] -= (2*bufferLong[d-sChans]) - bufferLong[d-(sChans*2)];
for ( SInt32 d = (sChans*2)-1; d >= sChans; d-- )
bufferLong[d] -= bufferLong[d-sChans];
bufferOut[3] |= wpFlag;
maskLimit++;

// Test the sum and difference of stereo files to see if taking this computation will shrink the files.
if ( sChans = 2 )
{

//UInt64 magLR = @, magSD = 0;

for ( UInt32 s = @; s < framesRead * sChans; s += 2 )

{
bufferSD[s] = bufferLR[s] + bufferLR[s+1];
bufferSD[s+1] = bufferLR[s] - bufferLR[s+1];
magLR += bufferLR[s] < @ ? -bufferLR[s] : bufferLR[s];
magLR += bufferLR[s+1] < @ ? -bufferLR[s+1] : bufferLR[s+1];
magSD += bufferSD[s] < @ ? -bufferLR[s] : bufferLR[s];
magSD += bufferSD[s+1] < @ ? -bufferLR[s+1] : bufferLR[s+1];
¥

if (magSD < magLR)

bufferLong = bufferSD; // change to point to data in bufferSD
bufferOut[3] |= sumDifFlag;
maskLimit++;
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// Complement and rotate
for ( SInt32 cr = @; cr < framesRead * sChans; cr++ )
bufferLong[cr] = (bufferLong[cr] & @x80000000) ? ~(bufferLong[cr] << 1) : bufferLong[cr] << 1;
// shift pads right bit with a @, comp set it to 1
//  This is the only transform that doesn't add another bit to the sample.

// Before starting to encode the data test to be sure the mask limit is not greater than 30.
if (maskLimit > 30)
throw (-1);

// put the size of the target block
*(SIntl6*)&bufferOut[4] = framesRead-1;

#if TEXT_OUTPUT

#endif

textFile << BitString(&ufferOut[@], 2, theBitString) << "\tBlock Size: " << framesRead << endl;

TlongbOutIndex = 6;

// for each channel
for (long ch=0; ch<sChans; ch++ ) // for each channel

{
#if TEXT_OUTPUT

#endif

textFile << "New channel started (" << (ch?"right":"left") << ").\n";

for ( SInt32 maskPosition = @; maskPosition < maskLimit; maskPosition += maskSize )

{
#if TEXT_OUTPUT

#endif

textFile << "Mask position (" << maskPosition << ").\n";

SInt32 frmIndex = @;// source sample index
UInt32 bitMask = columnMask << maskPosition;

bitLiteral bLit;
bLit.usePattern = 1;// these two are always 1 for this data type
bLit.useliteral =1;

bool prevLiteralAvailable = false; // was last chunk a literdl or one of the repeaters

bitRepeat bRep;
bRep.usePattern = 1;
bRep.useliteral = 0;

//for (long bc=0; bc<64; bc++)
//  blLit.bits[bc] = 0; // set pattern to save to all zeros
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// scan these pairs of bits in all the samples of this channel
while ( frmIndex < framesRead )
{
// grabbing 32 bits saves doing a bit shift at every compare
SInt32 firstSample = bufferLong[(frmIndex * sChans)+ch] & bitMask;
SInt32 pCount = 1; // pattern count (one found so far)

// check for repeating bits
while ( ((bufferLong[((frmIndex+pCount)*sChans)+ch] & bitMask) == firstSample)
&& (pCount < framesRead-frmIndex) )
pCount++;

// write out literal if we are switching to a repeater or if literdal is full
if ( ((bLit.count == 63) || (pCount > 4)) & prevLiteralAvailable)

: :BlockMove(&bLit, &bufferOut[bOutIndex], bLit.count+2);

#if TEXT_OUTPUT

#endif

textFile << BitString(&bufferOut[bOutIndex], 1, theBitString) << "\t\t" << bLit.count+l << "\n";
for (SInt32 tf=1; tf<bLit.count+2; tf++)
textFile << "\t" << BitString(&ufferOut[bOutIndex+tf], 1, theBitString) << "\n";

bOutIndex += (bLit.count+2);
prevLiteralAvailable = false;

//for (long bc=0; bc<64; bc++)
// blLit.bits[bc] = 0; // clear bLit space
¥

// save the tally of bits in the proper (smallest) format
if (pCount > 16 && firstSample == @) // only '@0' can have more than 16 to a run
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*(SInt16*)&bufferOut[bOutIndex] = (SIntl6) pCount-1; // same as zeroRepeat data type

#if TEXT_OUTPUT

textFile << BitString(&bufferOut[bOutIndex], 2, theBitString) << "\t" << pCount << "\n";

#endif

bOutIndex += 2;
frmIndex += pCount;
pCount = 0@;

¥

else if ( pCount > 4 || (pCount==4 && !prevLiteralAvailable) )

{
bRep.pattern = firstSample >> maskPosition;
pCount = pCount>16 ? 16 : pCount; //  limit run of pattern other than '00' to max 16
bRep. count = pCount-1;

bufferOut[bOutIndex] = *((Byte*)&bRep);

#if TEXT_OUTPUT

textFile << BitString(&ufferOut[bOutIndex], 1, theBitString) << "\t\t" << pCount << "\n";

#endif
bOutIndex++;
frmIndex += pCount;
pCount = 0@;
else// else just save the next 4 literal pairs
{
if (prevlLiteralAvailable)
bLit.count++;
else
{
bLit.count = 0;
prevLiteralAvailable = true;
¥
bLit.bits[bLit.count] = (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition) << 6;
frmIndex++;
bLit.bits[bLit.count] |= (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition) << 4;
frmIndex++;
bLit.bits[bLit.count] |= (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition) << 2;
frmIndex++;
bLit.bits[bLit.count] |= (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition);
frmIndex++;
pCount = 0@;
¥
¥
if (prevlLiteralAvailable) // copy remaining literdl to output buffer
{
: :BlockMove(&bLit, &bufferOut[bOutIndex], bLit.count+2);
#if TEXT_OUTPUT
textFile << BitString(&bufferOut[bOutIndex], 1, theBitString) << "\n";
for (SInt32 tf=1; tf<bLit.count+2; tf++)
textFile << "\t" << BitString(&ufferOut[bOutIndex+tf], 1, theBitString) << "\n";
#endif
bOutIndex += (bLit.count+2);
¥
¥
¥
destFile.PutBytes(bufferOut, bOutIndex);
¥
destFile.UpdateHeader(sourceFile.GetFrameMarker()); // make the size the same as what we just read

}

delete bufferIn;
delete bufferlLR;
delete bufferSD;
delete bufferQut;

#if TEXT_OUTPUT
char* BitString(void *inData, unsigned long inSize, char *ioStr) // returns ioStr as a C string

{

Bytemask= 0b10000000;
Byte*inCast = (Byte *) inData;

for (unsigned long b = @; b<inSize; b++)
{
for(unsigned long bt = @; bt<8; bt++)

ioStr[(b*8)+bt] = (inCast[b] & (mask >> bt)) ? '1' : '0";
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¥
¥
ioStr[inSize*8] = 0;
return ioStr;
¥
#endif
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D Decode

LI177711777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777
void
RWLlcDecode: :Process ( FSSpec &inSrcSpec, FSSpec &inDestSpec )

{

LI1177111777777777777/777777777777/777777/777777/77777/777777/7/77/7/7//7//7  File management /117711711777/7/777
// set up source struct and open source file
SoundFile sourceFile ( inSrcSpec );
sourceFile.Open(fsRdPerm);

// must be compressed with my algorithm
if (sourceFile.Format() != 'RWlc')

SysBeep(@);
return;

}

// set up destination class
SoundFile  destFile(inDestSpec);

// check for enough space on destination drive,

// return with error if not (set flag)

FileInfoPB srcInfo ( inSrcSpec );

if ( !destFile.IsSpaceAvailable(srcInfo.GetSize() + 102400) ) // 100k free space

{
mDiskFull = true;
SysBeep(@);
return;

¥

// create destination file, same type as source, with QuickTime Player as the creator
destFile.CreateAndOpen('TVOD', saveAsType, sourceFile.SampleSize(), sourceFile.SampleRate(), sourceFile.Channels(Q) );
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// declare buffers and counters
SInt32 bytesRead;
SInt32 framesInBlock;

SInt32 sChans = sourceFile.Channels(); // copied out for readability

UInt8 *pufferln = new UInt8[chunkMult];

SInt32 *bufferLong = new SInt32[(chunkMult * sChans)+4]; // plus space for bitLiteral to write past end
SInt8 *pufferOut = new SInt8[chunkMult * sourceFile.FrameSize()];

SInt32 zeroRepeatRun;
SInt32 literalCount;

// initialize values

SInt32  frmIndex = 0;
states state = firstZero;
SInt32 ch = 0;

UInt8 correlation = 0;

for (SInt32 cl=0; cl<chunkMult * sChans; cl+=2)
*(SInt64*)&bufferLong[cl] = OLL;

// the mask starts with the 2 bits on the right and moves left
UInt32 maskPosition;
UInt32 maskLimit;

I11777117777777777777/7777777777777777777/777777/77777777777777/777777/ start conversion /////////////////////
// read source data, run process, and write to file
while ( (bytesRead = sourceFile.ReadBytes((void *)bufferIn, chunkMult)) != @ ) // THIS COULD READ PAST THE AUDIO DATA

// for each byte in bufferIn
for ( SInt32 b=0; b<bytesRead; b++ )
{
switch ( state )
{
case firstZero:
if ( bufferIn[b] == 0 )
state = secondZero;
// else still looking for firstZero, something was wrong
// (ie. we're not at the start of a block for streaming)
break;
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case secondZero:
if C bufferIn[b] == 0 )

state = thirdZero;
else

state = firstZero; //
break;

case thirdZero:
if ( bufferIn[b] == 0 )

state = corrFlags; //
else

state = firstZero; //
break;

case corrFlags:

//

correlation

copy correlation flags
= bufferIn[b];

if not, start over looking for first zero

we've found the three zero bytes, this is the start of a block

bad data, start looking for start of block again

// the mask starts with the 2 bits on the right and moves left
maskPosition = 0OL;
maskLimit = destFile.SampleSize();

//

each correlation algorithm requires one more bit

for ( Byte m=0x01; m>0x00; m<<=1 )

state

if (correlation & m)
maskLimit++;
= blockLenl;

break;

case blockLenl:

framesInBlock = ((SInt32)bufferIn[b]) << 8; //
state = blockLen2;
break;

case blockLen2:

framesInBlock I= ((SInt32)bufferIn[b]); //
framesInBlock++; // plus one to make up for offset
state = nextChunk;

break;

case nextChunk:
switch ( bufferIn[b] & 0b11000000 ) //

{

case 0b00A0VR0: // 00
case 0b01000000: // 01

zeroRepeatRun = ((SInt32)bufferIn[b]) << 8; //
state = zeroRep;
break;

case 0b10000000: // 1@, do run of pattern now

copy high-byte of short int (clears lower byte)

copy low-byte of short

view only top two bits

copy high-byte of short

//for ( long p=0; p<=((bitRepeat*)&bufferIn[b])->count; p++ ) // p<=count is same as p<count+l

SInt32

theBits = ((SInt32)(bufferIn[b] & 0b00110000) >> 4) << maskPosition;

for ( SInt32 p=0; p<=(bufferIn[b] & @b000V1111); p++ ) // p<=count is same as p<count+l
{

bufferLong[(frmIndex*sChans)+ch] |= theBits;

frmIndex++;
¥
state = nextChunk;
break;

case 0b11000000:

literalCount = bufferIn[b] & @0b0@111111; //
state = literalRun;
break;

}

break;

case zeroRep:

zeroRepeatRun I= ((SInt32)bufferIn[b]l); //
zeroRepeatRun++;
state = nextChunk;
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// we don't need to write the zeros, they're dlready there
// just move up the frame count

frmIndex += zeroRepeatRun;

break;

case literalRun:
// copy out literal data

bufferLong[(frmIndex*sChans)+ch] |= ((SInt32)( bufferIn[b] >> 6)) << maskPosition;
frmIndex++;
bufferLong[(frmIndex*sChans)+ch] |= ((SInt32)((bufferIn[b] & 0b00110000) >> 4)) << maskPosition;
frmIndex++;
bufferLong[(frmIndex*sChans)+ch] |= ((SInt32)((bufferIn[b] & 0b00AA1100) >> 2)) << maskPosition;
frmIndex++;
bufferLong[(frmIndex*sChans)+ch] |= ((SInt32) (bufferIn[b] & 0b00AAOA11) ) << maskPosition;
frmIndex++;

if ( literalCount == 0 )
state = nextChunk;

literalCount--;

break;

// test to change to new bit column
if ( frmIndex >= framesInBlock /*8& state != blockLenl*/)
{

frmIndex = 0;

maskPosition += maskSize;

// test for new channel
if ( maskPosition >= maskLimit )
{

maskPosition = OL;

ch++;

// If all channels are done then we're at the end of a block.
if ( ch >= sChans )
{

ch = 0;

// Rotate and complement.
// if left most byte is a 1 then this will produce an error (bit?)
for ( SInt32 cr=0; cr<framesInBlock*sChans; cr++)
bufferLong[cr] = (bufferLong[cr] & 1L) ? ~(bufferLong[cr] >> 1) : bufferLong[cr] >> 1;

// Go through de-correlation algorithms in reverse order from the encoding.

//  Sum-Diff (only for 2 channel signals [for now]).
if (correlation & sumDifFlag)
{
switch (sChans)
{
case 2:
// do process in place (same buffer)
for ( SInt32 sd=0; sd<framesInBlock*sChans; sd+=2) // (s)um-(d)iff

SInt32 sum = bufferLong[sd];
SInt32 diff = bufferLong[sd+1];
bufferLong[sd] = (sum + diff) >> 1; // divide by 2
bufferLong[sd+1] = (sum - diff) >> 1;
}

break;

default: // other combinations of channels might be tried for 3 or more channels
break;

}

// Delta.
if (correlation & deltaFlag)
for ( SInt32 id=sChans; id<framesInBlock*sChans; id++) // (idndex (d)elta
bufferLong[id] += bufferLong[id-sChans];

SInt32 sl;
SInt32 ib=0;
switch (sourceFile.SampleSize())

{

case 8:
for(sl=0; sl<(framesInBlock * sChans); sl++)
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bufferOut[sl] = bufferLong[sl];
break;

case 16:

short *shortCast = (short *) bufferQut;

for(sl=0; sl<(framesInBlock * sChans); sl++)
shortCast[sl] = bufferLong[sl];

break;
case 20:
for(sl=0; sl<(framesInBlock * sChans); sl++)
{
bufferLong[sl] <<= 4;
Byte *longByte = (Byte *) &bufferLong[sl];
bufferOut[ib++] = longByte[1]; // zero, the high byte is not used

bufferOut[ib++] = longByte[2];
bufferOut[ib++] = longByte[3];

}

break;

case 24:

for(sl=0; sl<(framesInBlock * sChans); sl++)

{
Byte *longByte = (Byte *) &bufferLong[sl];
bufferOut[ib++] = longByte[1]; // zero, the high byte is not used
bufferOut[ib++] = longByte[2];
bufferOut[ib++] = longByte[3];

}

break;

default:

// some error report

break;

¥

destFile.WriteFrames(bufferOut, framesInBlock);

// clear buffer (write zeros) for next block

for (SInt32 cl=0; cl<chunkMult * sChans; cl+=2)
*(SInte4*)&bufferLong[cl] = OLL;

state = firstZero;

¥
delete bufferIn;

delete bufferLong;
delete bufferQut;
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E Results

file cp gzip only gzip w/ delta

name size time t/M |size % encode decode size % encode decode
0Chi.aif Choral 55918906| 1.84 0.35( 36888938 66.0 11.94 226 6.41 1.21| 28594286 51.1 17.87 3.38 566 1.07
O1ce.aif Solo cello 177312682 7.91 0.47|155205456 87.5 289 173 2234 1.33|118959287 67.1 4238 253 2074 124
02be.aif Orchestra 43582666| 1.48 0.36 35594753 81.7 855 2.08 513 1.25( 30061992 69.0 923 224 474 115
03cc.aif Ballet 24395050| 0.59 0.26 20857970 85.5 437 1.90 2.87 1.25( 17807626 73.0 513 223 293 127
04sl.aif Software synthesis 85029610| 3.54 0.44| 67665617 79.6 16.68 2.08 1041 1.30| 51037353 600 21.15 263 9.09 1.13
05bm.aif Club techno 50136442| 1.89 0.34 55418957 93.7 11.42 2.04 7.32 1.31| 50434803 853 11.61 2.08 63 1.13
O6eb.aif Rampant trance techno 43998970| 1.21 0.29 40950540 93.1 871 210 235 0.57| 35629858 81.0 948 228 492 118
07bi.aif Rock 88853962| 3.46 0.41| 81328151 915 172 205 3.89 046 72540016 816 19.08 227 992 1.18
08ky.aif Pop 35896330 1.03 0.30| 33169246 92.4 725 214 128 0.38| 30907717 86.1 7.07 208 4 118
09sr.aif Indian classical 1 71693770 3.29 0.49| 67314627 939 1409 208 35 052 55139377 769 1582 234 778 1.15
10si.aif Indian classical 2 89411386 3.61 0.43| 78853909 882 17.87 2.12 481 057 71570366 80.0 19.7 233 987 117
1kHz t.b.v. Calibration- Left Channel.aif 3880854 0.12 0.33| 2191314 565 172 469 029 079 1769781 456 1.7 464 022 0.60
1 kHz t.b.v. Calibration- Right Channel.aif 3883064 0.08 0.22| 2233364 575 165 450 028 076 1822309 46.9 168 458 033 0.90
1_8 Octave Bands of Pink Noise.aif 53451468 1.73 0.34| 30567068 57.2 2182 4.32 583 1.15( 22127746 414 1728 342 483 096
1_8 octave Bands of Pink Noise- Left Channel.aif ~ 53451454] 195 0.39| 30557093 57.2 21.77 431 575 1.14 22116928 414 1735 3.44 479 095
A Passing Train In the Quiet Dutch Farmlands???.: 25316894 0.30 0.13| 16826555 66.5 514 215 2.84 1.19( 12557140 49.6 6.39 267 21 088
Apparatus Musico-Organisticus, Toccata 1a.aif 57685084| 2.00 0.37| 50367829 87.3 1.17 205 7.39 1.36( 43914047 76.1 1321 242 6.43 1.18
Baiao Malandro.aif 49217864| 223 0.48( 41742152 848 10.12 2.18 228 049 31319824 636 1245 268 536 1.15
Broadbank Pink Noise.aif 3765444| 0.08 0.22| 3319749 882 077 216 023 0.65( 3217274 854 0.81 228 036 1.01
Capoeira (from Ciclo Nordestino No 3).aif 8563564| 0.13 0.16| 6223917 727 1.69 209 0.46 057 4496600 52.5 23 284 0.81 1.00
Come Hither You That Love.aif 21523102 0.27 0.13| 17340610 80.6 445 219 0.77 0.38 14164229 658 547 269 222 1.09
Concerto For 2 Trumpets & Strings, RV 537, C Maj 33694726 1.59 0.50| 29207135 86.7 6.63 2.08 159 0.50| 25096246 74.5 7.84 2.46 359 1.13
Concerto No 2 in D major, Allegro.aif 38281084| 1.13 0.31| 32754992 85.6 768 212 13 0.36 26890786 70.2 922 255 425 1.18
Everything's Gonna Be All Right.aif 41545622| 1.24 0.32 37282997 89.7 832 212 142 0.36| 30921089 74.4 947 241 447 114
Hangin' On To The Good Times.aif 50805440| 4.95 1.03| 45637738 89.8 9.8 204 3.01 0.63( 37989128 74.8 11.66 243 561 1.17
Lute Solo.aif 16760254| 159 1.00( 11448268 68.3 3.44 217 1.09 0.69| 8044680 48.0 479 3.02 158 1.00
Martelo (from Ciclo Nordestino No. 1).aif 7674506 0.66 0.91| 5907548 77.0 154 212 041 057 4525428 59.0 191 263 073 1.01
Nevermore (excerpt).aif 32107062 3.45 1.14| 26468462 82.4 642 212 1.08 0.36| 22248495 69.3 814 268 336 1.1
Northern Lights.aif 62624250 6.73 1.14| 49307363 78.7 1289 2.18 3.01 051 36578243 584 1668 2.82 6.08 1.03
Of Strange Lands and People, Scenes From Childt 18611324 1.70 0.97| 14463127 77.7 372 212 0.81 046 10620759 57.1 496 282 178 1.01
Sonata No 15 in D major, Op. 28 _Pastoral_, Schel 26815208 2.65 1.05| 21798999 81.3 531 210 095 0.37( 16169031 60.3 677 267 255 1.01
Symphony No 4, 4th Movement (excerpt).aif 34482630 3.67 1.13| 26018813 755 731 224 125 0.38| 19958713 57.9 929 285 345 1.06
Symphony No 8 (excerpt).aif 39868698 4.30 1.14| 32241100 80.9 812 2.16 135 0.36| 26258917 659 1021 271 43 1.14
TOTAL 1.459E+09| 72.40 0.53| 1.207E+09 82.7 308.46 2.24 1137 0.82|985490084 675 358.1 260 155.15 1.13

Table 6a. Results for cp, gzip only, and gzip with delta encoding.

file slac alone slac w/delta

name size size % encode ode size %

0Ohi.aif Choral 55918906| 35703339 63.8 713 135 567 1.07| 30255451 54.1 629 1.19 528 1.00
O1ce.aif Solo cello 177312682\ 130909484 73.8 22.38 134 19.03 1.14| 99449984 56.1 20.08 120 1789 1.07
02be.aif Orchestra 43582666 27736777 63.6 5.23 1.27 4.48 1.09| 23804354 54.6 4.89 1.19 4.12 1.00
03cc.aif Ballet 24395050 19634100 80.5 3.2 1.39 2.61 1.13| 16566626 67.9 2.92 127 255 1.1
04sl.aif Software synthesis 85029610 57779407 680 1051 1.31 8.78 1.09| 46481490 54.7 9.87 1.23 8.25 1.03
05bm.aif Club techno 59136442| 52251841 88.4 848 152 6.83 1.22( 47630496 80.5 79 141 7.1 1.27
06eb.aif Rampant trance techno 43998970 37812467 85.9 5.77 1.39 4.93 1.19| 33617040 76.4 57 1.37 4.91 1.18
07bi.aif Rock 88853962 76253636 858 1225 146 10.07 1.20| 67812148 76.3 11.88 142 1003 1.19
08ky.aif Pop 35896330 32362702 90.2 517 1.52 4.09 1.21| 30067607 83.8 5.08 1.50 4.14 1.22
09sr.aif Indian classical 1 71693770| 58937748 82.2 9.09 1.34 8.06 1.19| 46982316 65.5 8.6 1.27 7.72 1.14
10si.aif Indian classical 2 89411386| 74315469 83.1 129 153 9.81 1.16( 65520794 733 12.01 1.42 976 1.16
1 kHz t.b.v. Calibration- Left Channel.aif 3880854| 1564683 40.3 049 134 0.19 052 1238264 31.9 047 128 02 055
1 kHz t.b.v. Calibration- Right Channel.aif 3883064| 1616759 41.6 0.51 1.39 0.2 0.55| 1300958 33.5 0.47 1.28 0.19 052
1_3 Octave Bands of Pink Noise.aif 53451468 20759070 38.8 5.34 1.06 453 0.90 16328474 30.5 484 0.96 434 086

1_3 octave Bands of Pink Noise- Left Channel.aif 53451454 20750671 38.8 5.05 1.00 4.11 0.81| 16316850 30.5 4.59 0.91 4.23 0.84
A Passing Train In the Quiet Dutch Farmlands???.¢ 25316894 14235630 56.2 3.13 1.31 2.28 0.95| 11057384 43.7 257 1.07 2.09 0.87
Apparatus Musico-Organisticus, Toccata 1a.aif 57685084| 48827675 84.6 826 152 6.27 115 41440645 71.8 75 138 636 1.17

Baiao Malandro.aif 49217864| 34908972 70.9 627 135 5.07 1.09( 26165276 53.2 5.71 1.23 487 1.05
Broadbank Pink Noise.aif 3765444| 3264771 86.7 049 138 029 0.82( 2977349 79.1 0.51 1.43 027 076
Capoeira (from Ciclo Nordestino No 3).aif 8563564| 5158282 60.2 126 156 0.79 098 3770374 440 095 117 06 074
Come Hither You That Love.aif 21523102 15204020 70.6 2.64 1.30 2.06 1.01| 12348747 57.4 2.35 1.16 199 098
Concerto For 2 Trumpets & Strings, RV 537, C Maj 33694726| 26323419 78.1 4.61 1.45 3.68 1.16| 22363043 66.4 4.21 1.32 3.54 1.1
Concerto No 2 in D major, Allegro.aif 38281084 28753728 75.1 5.09 1.41 415 1.15| 23413383 61.2 4.7 1.30 3.87 1.07
Everything's Gonna Be All Right.aif 41545622| 32789813 78.9 555 1.41 4.35 1.11| 27767607 66.8 515 1.31 438 1.12
Hangin' On To The Good Times .aif 50805440| 40470915 79.7 719 150 541 1.13| 34082321 67.1 638 1.33 498 1.04
Lute Solo.aif 16760254| 9301722 555 1.94 1.23 1.44 091 7208986 43.0 1.66 1.05 128 0.81
Martelo (from Ciclo Nordestino No. 1).aif 7674506| 5073713 66.1 1.1 1.52 0.64 0.88 3822768 49.8 0.87 1.20 054 074
Nevermore (excerpt).aif 32107062 25075791 78.1 4.24 1.40 3.55 1.17| 20455885 63.7 3.93 1.30 3.1 1.02
Northern Lights.aif 62624250| 41603524 66.4 835 1.41 6.62 1.12( 32965446 52.6 687 1.16 576 0.97

Of Strange Lands and People, Scenes From Childt  18611324| 11967849 64.3 216 1238 191 1.09| 8518538 45.8 205 117 145 082
Sonata No 15 in D major, Op. 28 _Pastoral_, Schel 26815208 18100951 67.5 335 132 274 1.08| 13228385 49.3 299 118 219 086

Symphony No 4, 4th Movement (excerpt).aif 34482630| 22141275 64.2 428 131 3.29 1.01 17762170 515 3.81 117 3.06 0.94
Symphony No 8 (excerpt).aif 30868698 28433988 71.3 5.05 1.34 3.95 1.05| 23016877 57.7 4.6 1.22 357 095
TOTAL 1.459E+09| 1.06E+09 726 188.46 1.37 151.88 1.10|875738036 60.0 1724 1.25 144.62 1.05

Table 6b. Results for SLAC with no decorrelation, and with delta encoding.
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file slac w/wpFast flac -0

name size size % encode ode size %

0Ohi.aif Choral 55918906| 29051026 52.0 634 120 5.47 1.04 21047970 37.6 405 077 529 1.00
O1ce.aif Solo cello 177312682 89236238 50.3 18585 1.13 16.87 1.01 75200532 424 1229 073 18.05 1.08
02be.aif Orchestra 43582666 23343243 53.6 497 1.21 3.98 0.97| 24376447 559 34 083 5.07 1.28
03cc.aif Ballet 24395050 15965050 65.4 295 1.28 2.45 1.06| 14235912 58.4 2.8 1.21 2.58 1.12
0O4sl.aif Software synthesis 85029610| 43664922 51.4 926 1.15 7.53 0.94( 36325332 42.7 85 1.06 862 1.07
05bm.aif Club techno 59136442| 47726370 80.7 772 138 6.82 1.22( 43949202 74.3 718 1.29 7.61 1.36
O6eb.aif Rampant trance techno 43998970| 33547446 76.2 559 134 474 1.14| 30367169 69.0 552 133 535 1.29
07bi.aif Rock 88853962| 65331051 735 11.38 1.36 9.44 1.12( 58032630 653 1059 126 1082 1.29
08ky.aif Pop 35896330| 29784524 83.0 484 143 428 1.26 26820677 74.7 444 131 451 1.33
O9sr.aif Indian classical 1 71693770 40904081 57.1 7.97 1.18 7.03 1.04| 38656259 53.9 7.89 1.16 7.93 117
10si.aif Indian classical 2 89411386( 60250542 67.4 11.16 1.32 8.77 1.04| 51308077 574 10.36 1.23 9.9 1.17
1 kHz t.b.v. Calibration- Left Channel.aif 3880854 940130 24.2 0.47 1.28 0.16 0.44 667733 17.2 0.43 117 036 0.98
1 kHz t.b.v. Calibration- Right Channel.aif 3883064| 1009092 26.0 0.42 1.14 0.17 046 708914 183 0.53 1.44 036 0.98
1_3 Octave Bands of Pink Noise.aif 53451468| 14045228 26.3 477 094 3.71 0.73| 11658078 21.8 436 0.86 445 088
1_8 octave Bands of Pink Noise- Left Channel.aif = 53451454| 14032276 26.3 46 091 3.79 0.75[ 11651042 21.8 423 084 4.01 0.79
A Passing Train In the Quiet Dutch Farmlands???.c 25316894 10540021 41.6 254 1.06 1.91 0.80| 8877209 351 2.66 1.1 244 1.02
Apparatus Musico-Organisticus, Toccata 1a.aif 57685084 37664922 65.3 6.91 1.27 5.68 1.04| 32508059 56.4 6.69 1.23 6.13 1.12
Baiao Malandro.aif 49217864 21482996 43.6 5.12 1.10 406 0.87| 18245407 37.1 497 1.07 4.79 1.03
Broadbank Pink Noise.aif 3765444| 3108558 82.6 0.63 1.77 029 0.82 2982954 79.2 0.61 1.71 0.44 1.24
Capoeira (from Ciclo Nordestino No 3).aif 8563564| 3120670 36.4 0.83 1.03 0.47 058 2682263 31.3 092 1.14 076 0.94
Come Hither You That Love.aif 21523102| 11610634 53.9 233 1.15 186 091 9924867 46.1 237 117 219 1.08
Concerto For 2 Trumpets & Strings, RV 537, C Maj 33694726 19846807 58.9 3.82 1.20 3.1 0.97| 16399931 487 359 1.13 356 1.12
Concerto No 2 in D major, Allegro.aif 38281084| 20794102 54.3 415 1.15 3.45 095 17275305 45.1 417 115 38 1.05
Everything's Gonna Be All Right.aif 41545622| 26917461 64.8 503 1.28 419  1.07| 24384017 58.7 476 121 46 117
Hangin' On To The Good Times.aif 50805440 32863438 64.7 6.46 1.35 4.82 1.00| 28817311 56.7 5.55 1.16 5.98 1.25
Lute Solo.aif 16760254 6609844 39.4 1.78 1.12 119 0.75| 5679886 33.9 1.69 1.07 1.61 1.02
Martelo (from Ciclo Nordestino No. 1).aif 7674506| 3223969 42.0 0.71 0.98 0.53 0.73| 2805063 36.6 0.87 1.20 0.85 1.17
Nevermore (excerpt).aif 32107062| 17654616 55.0 3.85 1.27 2.84 0.94 13801949 43.0 3.35 1.10 3.3 1.09
Northern Lights.aif 62624250 31366390 50.1 6.82 1.15 546 0.92 26395824 421 6.65 1.12 6.32 1.07
Of Strange Lands and People, Scenes From Childt 18611324 6566405 35.3 179  1.02 1.31 0.74| 5395618 29.0 189 1.07 169 096
Sonata No 15 in D major, Op. 28 _Pastoral_, Scher 26815208 10960762 40.9 2.63 1.04 2.03 0.80| 8544867 31.9 2.66 1.05 222 088
Symphony No 4, 4th Movement (excerpt).aif 34482630 16318208 47.3 3.66 1.12 2.86 0.88| 13604149 395 3.56 1.09 323 0.99
Symphony No 8 (excerpt).aif 39868698 20507520 51.4 4.33 1.15 3.46 0.92 17459269 43.8 4.19 1.1 4.23 1.12
TOTAL 1.459E+09|809988542 555 164.68 119 134.72 0.98|700789922 48.0 147.72 1.07 153.05 1.1

Table 6¢. Results for SLAC with WavPack fast encoding and FLAC with option “-0".

file flac -8 WavPack -f

name size size % size %

0Ohi.aif Choral 55918906 19781507 354 3975 7.52 517 0.98| 20625476 36.9 648 123 591 1.12
O1ce.aif Solo cello 177312682| 73732170 416 12659 7.56 17.16  1.02| 73095180 412 2046 122 19.04 1.14
02be.aif Orchestra 43582666 17835781 409 3105 754 4.41 1.07( 18061710 41.4 4.99 1.21 5.13 1.25
03cc.aif Ballet 24395050 13538417 555 1763 7.65 27 1.17| 13729824 56.3 3.09 1.34 3.18 1.38
04sl.aif Software synthesis 85029610 34691660 40.8 603 7.51 8.98 1.12 36537236 43.0 9.77 1.22 9.26 1.15
05bm.aif Club techno 59136442| 40256556 68.1 43.11 7.72 73 1.31| 41265946 69.8 82 147 799 143
06eb.aif Rampant trance techno 43998970 29419852 669 3224 7.76 5.44 1.31 29431580 66.9 5.65 1.36 579 1.39
07bi.aif Rock 88853962 52726291 59.3 6438 7.67 10.01 1.19( 53929020 60.7 11.08 1.32 11.38 1.36
08ky.aif Pop 35896330 25174854 70.1 26.11 7.70 4.71 1.39( 25434892 70.9 478 1.41 4.88 1.44
09sr.aif Indian classical 1 71693770| 33231706 464 5154 7.61 7.22 1.07 32377318 452 9.67 1.43 8.3 1.23
10si.aif Indian classical 2 89411386| 46166424 516 64.16 7.59 972 1.15| 46324118 51.8 108 128 1043 123
1 kHz t.b.v. Calibration- Left Channel.aif 3880854 655037 16.9 23 627 037 1.01 1233968 31.8 067 1.83 045 123
1 kHz t.b.v. Calibration- Right Channel.aif 3883064 696794 17.9 23 627 0.38 1.04 1246190 32.1 0.64 1.74 0.48 1.31
1_3 Octave Bands of Pink Noise.aif 53451468 9810047 184 2826 560 422 0.84| 20387766 38.1 5.96 1.18 55 1.09
1_3 octave Bands of Pink Noise- Left Channel.aif 53451454| 9795553 18.3 2792 553 3.63 0.72| 20395024 38.2 6.19 1.23 5.45 1.08
A Passing Train In the Quiet Dutch Farmlands???.¢ 25316894 8345075 33.0 17.11 7.15 212 0.89| 8543938 33.7 3.63 1.52 2.56 1.07
Apparatus Musico-Organisticus, Toccata 1a.aif 57685084| 30898128 536 3999 7.34 625 1.15| 30348078 52.6 714 131 711 1.30
Baiao Malandro.aif 49217864| 17984231 365 3363 7.23 45 097 17781630 36.1 553 1.19 492 1.06
Broadbank Pink Noise.aif 3765444 2552663 67.8 283 7.9 052 1.46| 2617764 695 0.61 1.71 0.51 1.43
Capoeira (from Ciclo Nordestino No 3).aif 8563564 2648615 30.9 57 7.04 08 0.99| 2633968 30.8 102 126 097 120
Come Hither You That Love.aif 21523102 09568497 44.5 1465 7.20 2.26 1.1 9691908 45.0 2.66 1.31 2.48 1.22
Concerto For 2 Trumpets & Strings, RV 537, C Maj 33694726 15913373 472 2339 735 3.79 1.19( 15734670 46.7 417 1.31 423 1.33
Concerto No 2 in D major, Allegro.aif 38281084 16853072 440 2679 7.41 3.9 1.08( 16587168 43.3 457 1.26 4.33 1.20
Everything's Gonna Be All Right.aif 41545622| 22468194 541 2889 7.36 466 1.19| 23025398 55.4 525 134 512 1.30
Hangin' On To The Good Times.aif 50805440 27792107 547 3578 7.45 55 1.15| 28035000 55.2 628 1.31 655 1.36
Lute Solo.aif 16760254 5489756 32.8 125 7.10 147 0.93| 5602944 33.4 1.98 1.25 1.71 1.08
Martelo (from Ciclo Nordestino No. 1).aif 7674506| 2776668 36.2 5 6.90 0.74 1.02( 2763548 36.0 0.88 1.21 077 1.06
Nevermore (excerpt).aif 32107062 13329995 415 2188 7.21 2.89 0.95| 13022718 40.6 3.89 1.28 3.39 1.12
Northern Lights.aif 62624250 24987809 399 4323 7.31 663 1.12| 25354640 40.5 718 121 66 1.12
Of Strange Lands and People, Scenes From Childt 18611324 5245224 282 1235 7.02 154 0.88| 5282460 284 209 119 189 1.07
Sonata No 15 in D major, Op. 28 _Pastoral_, Schel 26815208 8134639 30.3 1823 7.20 218 0.86| 8022964 29.9 279 110 253 1.00
Symphony No 4, 4th Movement (excerpt).aif 34482630 12887097 37.4 2343 7.19 327 1.00| 13172258 38.2 392 1.20 37 1.14
Symphony No 8 (excerpt).aif 30868698 16697146 419 2722 7.23 4.37 1.16( 16871912 423 4.8 1.27 424 1.13
TOTAL 1.459E+09| 652084938 44.7 1009 7.32 148.81 1.08(679168214 465 176.82 1.28 166.78 1.21

Table 6d. Results for FLAC with option “-8” and WavPack fast setting.

77



file WavPack -h

name size size % enc (Is -r)
0Ohi.aif Choral 55918906| 20219622 362 1418 268 822 156 1677 317
O1ce.aif Solo cello 177312682 71092468 40.1 3237 193 2663 159 36.14 216
02be.aif Orchestra 43582666 16844800 38.7 7.98 1.94 6.68 1.62 945 229
03cc.aif Ballet 24395050 13197188 54.1 472 205 421 1.83 5.61 243
04sl.aif Software synthesis 85020610 34201148 402 1557 194 1254 156 1759 219
05bm.aif Club techno 59136442| 39218860 66.3 11.54 207 985 1.76 127 227
O6eb.aif Rampant trance techno 43998970| 28620610 65.0 848 2.04 754 181 9.81 236
07bi.aif Rock 88853962| 50473824 568 17.08 203 1392 166 19.04 227
08ky.aif Pop 35896330| 24403400 68.0 7.04 2.08 63 186 8.51 251
O9sr.aif Indian classical 1 71693770 31453468 439 1339 1.98 " 1.62 1745 258
10si.aif Indian classical 2 89411386( 44480598 49.7 17.17 2.03 14.01 1.66 18.81 223
1kHz t.b.v. Calibration- Left Channel.aif 3880854 974642 25.1 095 259 07 191

1 kHz t.b.v. Calibration- Right Channel.aif 3883064 997094 25.7 092 251 07 191

1_3 Octave Bands of Pink Noise.aif 53451468| 16742916 31.3 967 191 8.04 159

1_8 octave Bands of Pink Noise- Left Channel.aif = 53451454| 16732726 31.3 972 192 773 153
A Passing Train In the Quiet Dutch Farmlands???.c 25316894| 8138458 32.1 466 195 374 156
Apparatus Musico-Organisticus, Toccata 1a.aif 57685084 29298970 50.8 1067 1.96 8.91 1.63

Baiao Malandro.aif 49217864 17381370 35.3 948 204 7.34 1.58
Broadbank Pink Noise.aif 3765444| 2392636 63.5 094 264 0.71 2.00
Capoeira (from Ciclo Nordestino No 3).aif 8563564 2566926 30.0 166 205 137 169
Come Hither You That Love.aif 21523102| 9372132 435 4.08 2.01 339 167
Concerto For 2 Trumpets & Strings, RV 537, C Maj 33694726| 15240956 45.2 6.43 202 509 160
Concerto No 2 in D major, Allegro.aif 38281084| 16143934 422 7.36 2.03 59 163
Everything's Gonna Be All Right.aif 41545622| 21611908 52.0 796 2.03 647 165
Hangin' On To The Good Times.aif 50805440| 26244744 517 976 2.03 82 1.7
Lute Solo.aif 16760254 5393968 322 32 202 2.54 1.60
Martelo (from Ciclo Nordestino No. 1).aif 7674506 2687014 35.0 151 208 116 1.60
Nevermore (excerpt).aif 32107062| 12383110 38.6 6.19 2.04 486 1.60
Northern Lights.aif 62624250 24114800 38.5 11.45 1.94 9.58 1.62

Of Strange Lands and People, Scenes From Childt  18611324| 5011376 26.9 362 2.06 276 157
Sonata No 15 in D major, Op. 28 _Pastoral_, Schel 26815208| 7646346 285 4.83 1.91 3.92 1.55

Symphony No 4, 4th Movement (excerpt).aif 34482630| 12683546 36.8 6.58 2.02 538 1.65
Symphony No 8 (excerpt).aif 309868698| 16349608 410 736 195 614 163
TOTAL 1.459E+09|644315166 442 27847 2.02 22553 1.64

Table 6e. Results for WavPack high compression setting and files in reverse order.
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