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ABSTRACT 

SLAC: 

AN ALGORITHM FOR LOSSLESS AUDIO COMPRESSION 

By 

Reid Woodbury Jr. 

Masters of Science in Computer Science 

 

Lossless compression happens when a pattern can be described with symbols that 

are only as big as needed at a given instant to uniquely and exactly represent each value. 

Signals are a special case, as the number of bits needed to represent a value are often very 

high, and also have the property that each symbol is closely related to the next. Signal 

compression algorithms go an extra step to find the similarities between adjacent symbols 

and only store the differences between what the real value is and what some prediction 

scheme says the value should be. 

Typically, compression algorithms examine symbols in a data stream each in 

whole—whether those symbols are characters, bytes, pixels, or audio samples—and then 

look at that symbol’s neighbors for some pattern or redundancy. This paper proposes an 

approach that examines the data stream in larger pieces, treats those pieces as arrays of 

bits where each row represents one symbol, and examines the arrays column by column 

rather than one row at a time.
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Introduction 

The consumer’s need for accurate representation of audio program material is 

much less strict than that of professional listeners. Many algorithms have been developed 

to carefully model a signal and throw out less important information based on users’ pre-

ferences and tastes. They are called lossy algorithms. There are similar algorithms for 

images too. We need a different type of compression algorithm to cover the case where 

any loss of information would be unacceptable, whether that be for technical or aesthetic 

reasons. These are called lossless algorithms. 

This paper focuses on audio signals used in the entertainment industry such as 

music compact disks (CDs) and movie sound tracks. In general, a signal can be anything 

that represents something in the real world; a sonogram, radar, radio, video, or even still 

pictures. Lossless compression happens when a pattern can be described with symbols 

that are only as big as needed at a given instant to uniquely and exactly represent each 

value. Signals are a special case, as the number of bits needed to represent a value are 

often as high as 32 bits (sometimes more), rather than the typical eight used for text and 

executables, and also have the property that each instance (or symbol) is closely related 

to the next. And, where text and executables are precise, a repeat of the same character or 

word is exactly the same character or word. A signal can be say, a half-decibel quieter 

than the original (values approximately 94% of the magnitude of the original) and not be 

discernable from the original signal. Even trained listeners without a side-by-side com-

parison won’t be able to detect this change. Signal compression algorithms go this extra 

step to find the similarities between adjacent samples and only store the differences be-

tween what the real value is and what some prediction scheme says the value should be. 
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These similarities can be calculated with some very complicated digital signal processing 

(DSP) algorithms. 

The consumer marketplace has shown a desire for storing large amounts of audio. 

CD quality digital audio files are about 10.5 megabytes in size for every minute of audio. 

This means there’s a need for 500 to 700 megabytes of storage for each CD in a collec-

tion. Doing the math, a portable player’s 30-gigabyte hard drive can hold about 50 

uncompressed CD albums. The lossy algorithms can raise this to about 500 CDs with 

only audio purists possibly detecting any loss of quality, or even a thousand with what 

many people would consider acceptable quality. 

Lossless algorithms would bring this number to at least 80 albums with no loss of 

sound quality (no loss of information). Some reach average results as high as 150 albums, 

depending on the musical or audio content. There are many programs written for doing 

this and some will be examined here. 

Typically, compression algorithms examine symbols in a data stream each in 

whole—whether those symbols are characters, bytes, pixels, or audio samples—and then 

look at that symbol’s neighbors for some pattern or redundancy. This paper proposes an 

approach that examines the data stream in larger pieces, treats those pieces as arrays of 

bits where each row represents one symbol, and examines the arrays column by col-

umn—down the side—rather than one row at a time. It will be called SLAC for “sideways 

lossless audio compression.” 

Audio vs. Data Compression 

Professional audio engineers, sound editors, or music or film sound mixers are fa-

miliar with the term compression but they use it very differently. For them, “audio com-
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pression” means that the dynamic range, the difference between the loudest and softest 

sounds, has been reduced. This is a critical step in the preparation of audio for the con-

sumer. Natural sounds have a far too wide dynamic range for typical playback. Many 

electronic devices have been created to manipulate an electronic audio signal, each hav-

ing their own characteristic sound. Audio compression algorithms used to act on a digit-

ized version of an audio signal are often designed to mimic the characteristics of favored 

electronic compressors. That type of compression will not be covered further. 
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Objective 

Lossless audio data compression has been an interest of this author for many 

years. As an understanding of the computing issues involved grew, the need to try out 

some of these ideas also grew. This new algorithm, SLAC, will be discussed along with 

the current state of lossless audio compression in general. Digital audio for consumers is 

the focus, but digital audio is just a special case of signal processing. The techniques tried 

so far, what their results seem to be, and some ideas for improving the output of the pro-

gram will be covered. Of course, improvements mean smaller output files as this is about 

compression, and a faster running program. Techniques to maximize compression with 

this new view will be explored. A set of sound files was found on a web site that analyzes 

several lossless compression algorithms. These files will be examined with this algorithm 

and recompiled versions of existing algorithms, with the results extending what was 

found on that web site.1 
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Basic Data Compression Techniques 

Quite often the most efficient way to represent a symbol for easiest access and 

interpretation of what that symbol means is not the most efficient in the amount of space 

used.2 Today, the most common encoding of text is called UNICODE. There are many 

variants for different languages and dialects. For demonstration’s sake we’ll talk about 

the very similar and older ASCII (American Standard Code for Information Interchange). 

It has the amazing property in that it uses the lower seven bits of an 8-bit byte to encode 

the alphabet in… alphabetic order. This is a silly statement, but a common algorithm is 

sorting, and the most common way to sort text is in alphabetic order. So it behooves us to 

use an encoding in which the natural order corresponds to the order of the data it is to 

represent. ASCII further applies a pattern to the letters and numbers to make them easier, 

thus faster, to work with. For instance observe how letter case is represented for upper 

and lower case “A”: 

 
 

By simply masking off the bits in the box, or even the upper three bits, a sorting algo-

rithm that is to ignore letter-case need only continue as usual. And the numeric characters 

(0–9) are represented so that the four most significant bits can be ignored and the re-

maining bits are stored in two’s complement encoding, which is the same way integers 

are most often encoded. This way they can be interpreted as an integer with a minimum 

of manipulation.3 

With real world data, files will contain much redundancy and thus, wasted space. 

For instance, we can easily see that files that contain only ASCII numbers would be 

wasting (at least) half their space, as the four most significant bits aren’t needed. In 
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regular text files there is rarely an equal number of each character so with more complex 

encoding techniques a variable number of bits can be used to represent each character 

with shorter strings of bits used for the characters that repeat most.4 Patterns that repeat 

can also be marked and pointed to later as that pattern reoccurs. 

A key word that comes up in much of the literature on data compression is en-

tropy. The entropy E of a symbol is defined by the probability P of the symbol being used 

(1.0 being all the time, 0.0 being none of the time, 0.5 being half the time): 

    

! 

E = "P log2 P  .5 

The entropy of an alphabet is given as the sum of the entropies of the symbols in the al-

phabet. From this information we can do a statistical analysis of the data in a file and pre-

dict the best possible compression for the file. 

Most often in the literature, the compression encoding type is considered to be 

either statistical or dictionary. Others group them differently.6,7 This author considers 

transforms to not be directly part of the compressing of data but useful in preparation of 

the data. For instance, taking the delta-transform or relative encoding on a stream of 32-

bit floats may shrink the magnitude of the values stored in those floating-point variables 

but they will still take up 32 bits until one of these encoding types is applied to the data. 

An implementation of some sort will likely employ several of these techniques 

tailored to best compress a certain type of data. One standard for FAXing documents en-

codes it with a predetermined table of statistics for the amount of white and black space 

represented as run-length encoding (RLE), with these counts represented by a variable-

length code.8 The use of that predetermined table obviates the need for a document to be 

scanned twice on the transmitting side, or for the receiving side to build a table from the 
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received data in order to rebuild the image. It is important to know the needs of the data 

before making a blanket rule of how to represent that data. 

Often file types are built around an encoding. The file type TIFF (tagged image 

file format) has a version of the RLE and LZW (Lempel, Ziv, and Welch; described later) 

techniques as standard encoding options to make storage smaller. Files with these options 

set will, of course, take longer to read and write than files without these processes. 

Run-Length Encoding 

Sound, picture, and even text files often have runs of repeating characters or sym-

bols. These can be spaces inserted to format text, a character or characters to indicate a 

black sky in a picture, or integer zeros for silence between songs on a CD. Simple graphic 

pictures with long expanses of the same color are well suited for run-length encoding. It 

is considered a statistical encoding method but it’s described separately here because it 

considers only data adjacent to the current value being examined. The remainder of the 

file isn’t used except to determine the end of the run of this particular value. The statisti-

cal occurrences of other values in the file have no impact on how the current value is rep-

resented. 

The trade off with run length encoding (RLE) is that it needs some kind of marker 

to indicate if the next piece of data represents another run of symbols. This can be either 

an escape character, which also needs a way to indicate that this character is to be taken 

literally occasionally, or an extra bit can be added to each symbol that when set, could 

indicate that this value is the length of the run of the previous symbol. In both cases care 

must be taken to be sure that there are enough redundancies that the added bit on each 

symbol or added character doesn’t actually make the result larger. 
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Statistical Encoding 

Statistical techniques for compressing data work by replacing symbols repre-

sented by an equal-length code with symbols from a variable-length code whose lengths 

are inversely proportional to their probability. Variable length codes only work if they 

follow the prefix property. The prefix property holds that once a certain bit pattern has 

been assigned as the code of a symbol, no other code can start with that pattern. Thus, no 

pattern can be the prefix of another.9 Ideally the shortest codes are then assigned to char-

acters with the greatest probability. These algorithms are also referred to as “entropy en-

coders.” The simplest variable length code to visualize is a unary code. A version is 

shown here: 

0 = 0 
1 = 10 
2 = 110 
3 = 1110 
4 = 11110 
 

… and so forth. A count of zeros followed by a terminating “1” could also be used. One 

good thing about this code is that we don’t need to know in advance how many different 

values need to be encoded. This is because the numeric value indicates the count of 1’s to 

use before we reach a zero. 

But the statistics of a character matter for compression. It would be foolish to en-

code a 7 as 11111110 when there are no 5’s or 6’s needing to be represented with the 

new code. Right away we can see we’d be better off encoding 7 as 111110 and save the 

space. Even more importantly, a string of these unary bits can be assigned to any symbol, 

such as the number 17, the letter Q, or even a string of characters like alphabet 

soup. 
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Several techniques have evolved and been refined over the last sixty years or so. 

This started with the work of Golomb, Rice, Shannon, and Fano. The most popular of 

these algorithms is Huffman coding, which always produces the optimal prefix-code for a 

given entropy.10 Rather than drawing out the steps, as is done in many texts, there is an 

excellent web site with a Java applet by Woi Ang where one can watch a Huffman tree 

built graphically, step by step at: 

http://www.cs.auckland.ac.nz/software/AlgAnim/huffman.html#huffman_anim. 
 

The Huffman code is so good because it builds a proper prefix-code from the fre-

quency of symbols in a data set. This can be built for each file to be compressed (which is 

time consuming) or can be a canonical code based on typical usage. A large amount of 

standard text for a language can be examined by the programmer and a fixed Huffman 

encode and decode tree can be written into an implementation of the algorithm. There is 

also a technique of building the encode/decode tree as data is examined. This makes for 

faster encoding and decoding. As the algorithm progresses through a file a tree is built 

and the code is modified, as data is read and the frequency of the symbols changes. As an 

interesting note, the Huffman algorithm will build a unary code if the statistics of the data 

indicate that this would make the best encoding. 

An important but difficult to understand statistical technique is arithmetic coding. 

An oversimplification of this process starts by mapping the symbols to encode over the 

interval [0,1), with the size of the sub ranges for each symbol proportional to their fre-

quency in the original file. When a sub range is used, it is broken into new set of sub 

ranges proportion to the original range of [0, 1). This continues breaking down into 

smaller and smaller pieces, each represented by a number of greater and greater preci-

sion. This can produce better results than Huffman encoding by representing a large 
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number of input symbols, or even an entire file as one very large number, and that each 

symbol, in effect, will have a different number of bits representing it at different mo-

ments. This is because the input symbol is represented by the range in which the stored 

number falls, rather than the bits directly. 

On decoding, the range in which the number appears determines what symbol it 

represents, as each subsequent sub range determines each subsequent symbol. Let’s say 

the stored value is 0.718, and a set of mappings where the three most numerous charac-

ters are represented by a, b, and c. The symbol a, having a probability of 0.5, is given the 

range [0.5, 1); b, having a probability of 0.1, is given the range [0.4, 0.5); and c, having a 

probability of 0.2, is assigned the range [0.2, 0.4). Figure 1 shows how it maps the first 

four symbols of a set of data as a, b, c, a, etc. 

Dictionary Encoding 

Compression relies on files having redundancy. This redundancy need not only be 

based on the entropy of the characters used in a language but also on strings of characters 

repeating. A dictionary style algorithm will note where a pattern repeats and store a 

pointer to that repetition. Storing a pointer requires that the output data use more bits to 

represent a symbol so that we can discern when this symbol represents an original symbol 

or represents a series of symbols that have already been seen. 

 
Figure 1. Recursive mapping of a range. 11 
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A popular algorithm (and the best until recently, see GZIP below) is LZW com-

pression, named after its developers Lempel and Ziv, with later modifications by Welch. 

It works well with text and executable code.12 It looks at files as strings of eight-bit sym-

bols and outputs 12-bit symbols. A table with 4096 (212) positions is built as the input file 

is read. The first 256 output values are mapped directly from the input values. As a char-

acter is found on the input, it and subsequent characters are checked against existing en-

tries starting at the end. If a match is found, the position of that match is written to the 

output rather than that character. If not, the single character is written as a 12-bit symbol 

and this pair is added to the table. As the table is built, the added “pair” can consist of a 

character, or reference to a string of characters, plus the one additional character. If the 

table fills up, it’s cleared and a new table is started. 

Lossy Compression 

It should be noted that this paper is primarily about lossless compression. There is 

“lossy” compression, with popular forms being JPEG for pictures and MP3 for music. 

These algorithms’ job is to find and throw out less important information to help make 

the resulting files smaller. They also have settings that an end user can adjust when the 

desired trade off between the resulting file size and the quality of the content have been 

determined. 

JPEG 

As we will examine later, a typical first step for signal compression is to increase 

the redundancy in the values representing a signal. A simple way to do this for audio, but 

not the best, is to take the running difference, or delta transform on consecutive pairs of 

values. A better way to correlate pairs of values, or pixels, for images when the desire is 
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to throw out information, as in JPEG compression (Joint Photographic Experts Group), is 

to map each pair’s values as x and y coordinates in a two-dimensional space, rotate the 

result 45° toward the x axis, then read the new x and y values. This results in the y values 

grouping around one common value, zero. As we’ve seen before this lends itself to better 

entropy encoding. It also lends itself to better lossy compression as some of the bits to 

represent the accuracy of these smaller magnitude values can be thrown out with a 

smaller effect on the reconstructed image than if we hadn’t taken this step.13 This has the 

visual effect of softening the edges of details in the image. 

MP3 

Besides the desire to store more music, widespread music sharing has increased 

popularity of the MP3 file type, or more accurately called “MPEG-1 Layer-3.” This com-

plex algorithm and those like this are sometimes called perceptual compressors. (There 

are many other perceptual encoding algorithms used for music and movies, and change 

depending on delivery method. Some are more transmission friendly, while other have a 

better sound quality.) It finds redundancy in material based on many psycho-acoustic 

studies and concepts that are used to determine what information can be thrown away, 

similar to the techniques used for JPEG. These algorithms break a signal into overlapping 

pieces, analyze the frequency content of these pieces, and store that information. This 

then allows the use of a psycho-acoustic technique called masking, as seen in Figure 2. 

Masking is the property that a louder tone will mask the perception of quieter tones that 

are close to it in frequency and time. 
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A feature of these algorithms is that their bit rates can be set in advance, so they 

will only throw away the amount of data necessary to maintain that rate. They can choose 

to include all, part, or none of these other frequencies as needed, or to use fewer bits for 

marginal frequencies. These algorithms are also designed to pay more attention to (use 

more bits with) frequencies around 4kHz, as the human ear is more sensitive to these 

frequencies. 

       
Figure 2. Effects of masking. 14 



   

14 

Lossless Signal Compression Programs 

There are several lossless audio compression programs. Two of them, WavPack 

and FLAC (Free Lossless Audio Compression) were compiled locally for a proper com-

parison to the current incarnation of SLAC. GZIP was also tested for demonstrating the 

difference from those programs optimized for audio. Where information could be found, 

all of the signal compression algorithms use the same basic techniques (except for SLAC, 

of course). These can be broken down in two steps: transform and encoding. Correlation 

and prediction are both transform steps and both are used to shrink the magnitude of the 

values stored. Smaller values are more likely to have larger entropy. This is important for 

the encoding step. Encoding is then done with an entropy method. All programs, where 

information was available, use variations of Golomb-Rice or Huffman algorithms, or 

similar techniques of their own devising. FLAC adds the detection of long runs of abso-

lute silence (sample values of zero) and run-length encodes these. 

This excerpt draws attention to the architecture of many lossless audio codecs: 

• Blocking. The input is broken up into many contiguous blocks. […] The 
optimal size of the block is usually affected by many factors, including the 
sample rate, spectral characteristics over time, etc. […] 

• Interchannel Decorrelation. In the case of stereo streams, the encoder will 
create mid and side signals based on the [sum] and difference (respectively) 
of the left and right channels. The encoder will then pass the best form of the 
signal to the next stage.  

• Prediction. The block is passed through a prediction stage where the 
encoder tries to find a mathematical description (usually an approximate one) 
of the signal. This description is typically much smaller than the raw signal 
itself. Since the methods of prediction are known to both the encoder and 
decoder, only the parameters of the predictor need be included in the 
compressed stream. […]  

• Residual coding. If the predictor does not describe the signal exactly, the 
difference between the original signal and the predicted signal (called the 
error or residual signal) must be coded losslessy. If the predictor is effective, 
the residual signal will require fewer bits per sample than the original signal. 
[…]15 
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GZIP 

Even though GZIP is not a signal compression program, per sé, it’s included as a 

good standard program often used for other types of data. As good as LZW is and all of 

the struggles with copyrights that are placed on it, it turns out that for most data GZIP 

compresses better than LZW.16 It’s a combination of an earlier algorithm, LZ77, which 

uses a sliding window over the data to find duplications and redundancies, and the appli-

cation of a predetermined Huffman table. The algorithm uses this window, which is up to 

32Kbytes long, to search backward from the current byte for the longest match. It limits 

the length of the match and also takes the earliest match in order to produce the smallest 

reference value. This helps with the entropy and improves the effect of the Huffman algo-

rithm. To improve execution speed, references to the past matches are placed in a hash 

table.17 

Signal redundancy 

In experiments, applying one of the simpler decorrelation techniques to a sound 

file before applying GZIP always resulted in a smaller file than using GZIP alone. This 

demonstrates how the requirements of compressing signals are different from other types 

of data, as mentioned in the abstract. If a predictive transform (correlation algorithm; dis-

cussed later) is applied to the data, the change from symbol to symbol can become very 

small. With the output from the delta transform, there will still be long sets of data where 

it will look like the data from a transform of the slightly louder data. This is also more in 

relation to how the data is perceived. 

A program like GZIP, without a previously applied correlation transform, will see 

even a small moment-to-moment change in loudness as a completely different set of data 
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and never relate it to earlier versions of an otherwise identical waveform. Dictionary 

methods aren’t going to be suited directly to signal compression.18 (See also “SLAC: 

Manipulating the Signal: Possible Transforms: Pattern Matching”.) 

Information in a signal is more dependent on how data in one moment is related 

to data in the next moment. Defining a “moment” is an important part of understanding a 

particular signal and how to compress it. 

Transforms 

Though transforms are not considered by this author to be a compression tech-

nique directly, transforms are important in the preparation of signal data before applica-

tion of one of the compression techniques given above. Transforms act on how data re-

lates to itself from one moment to the next, rather than the statistics taken and mapping 

done of the member values as done in non-signal compression algorithms. Study of 

lossless signal compression techniques shows that some transform of the data is done in 

each algorithm with the precise techniques kept secret in the highly competitive, closed 

source applications. 

A transform can be as simple as a delta transform or running-difference, which 

means we store the difference between successive samples. We could also say “we pre-

dict this sample to be the same as the last.” This works for signals as the values in succes-

sive symbols or values are closely related19 (also see “SLAC: This Approach” in this 

document). A slightly more sophisticated method, described later in this document, stores 

the difference between the current sample and the linear prediction carried from the last 

two samples. An algorithm can use recursive or convolution filters, or be as complex as 
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the Fourier Transform, or more commonly, the discrete cosine transform (DCT and varia-

tions) which is most often used in lossy algorithms. 

A paper from Hewlett-Packard covers many details of what it calls intra-channel 

decorrelation and describes this part of the process this way: 

The purpose of [this] stage of the typical lossless audio coder … is to remove 
redundancy by decorrelating the samples within a [block]. … Most algorithms 
remove redundancy by some type of modified linear predictive modeling of the 
signal. In this approach a linear predictor is applied to the signal samples in each 
block resulting in a sequence of prediction error samples. The predictor para-
meters therefore represent the redundancy that is removed from the signal and the 
losslessly coded predictor parameters and prediction error together represent the 
signal in each block. 20 
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Manipulating sound files 

Programmers are less familiar with the way audio is stored than that of other files. 

We’ll survey several here to familiarize the reader with these formats. 

Sound Designer II (Sd2f) 

Of all sound file formats this one is the simplest to use. It was created and made 

available by Digidesign, Inc. and was made public in hopes of it becoming a standard. 

The metadata, the data that describes how the sound data is formatted, is stored in an ex-

tra part of the file made available by Apple Computer called the resource fork. This 

leaves the data fork to contain only the actual audio data. If it’s desired to begin reading 

audio from the start of the audio, the file pointer need only be put at the head of the file. 

Here is an excerpt from the Digidesign specification21 document: 

Sound Designer II files store all sound samples in the data fork and all sound 
parameters in the resource fork. This is extremely convenient for sound data 
where the data fork may grow to a hundred megabytes or more. Regardless of the 
size of the data fork you can add, delete, and modify sound parameters at will 
without compacting the sound data or moving it around the disk (and extremely 
time consuming procedure if the file is 100 MB). In addition, you may add your 
own parameters to a file (as long as their resource types don’t conflict with 
Sound Designer II’s) while allowing the file to be read by both Sound Designer 
and your program. 

The Apple resource fork can be thought of as a file system within a file. The exact 

position of the data from the head of the fork need not be a concern of the programmer. 

The OS handles reading and writing the labeled information. The labels are a combina-

tion of a four-character type code (i.e. ‘Sd2f’, ‘RWlc’), a 16-bit integer ID, and an op-

tional name string. Any four byte-values, represented by extended ASCII characters, is 

allowed in a four-character code, but Apple reserves the use of all lower-case letters. 
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The format predefines several resource types, only three of which are of interest 

here (and are required by the specification). The three are of type ‘STR ’ (note the space 

at the end to make four characters) and this type is used to store short strings. String ID 

1000 is the sample size in bytes, string ID 1001 is the sample rate and shown as a decimal 

(44100.0000), and string ID 1002 is the number of channels. The use of strings makes the 

data human readable, and Digidesign’s software always writes the resource name to the 

file, increasing its readability. A track from an audio CD converted to this file type would 

have a sample size of “2,” a sample rate of “44100.0000,” and the number of channels 

would be “2.” An early Digidesign workstation actually used 20-bit samples padding the 

last four places with zero-bits to make a whole three bytes. 

The data fork is so simply laid out that it’s best to just quote from the specifica-

tion document: 

The data of a Sound Designer II file is stored in Two's Complement encoding. 
Byte one of the data fork is the first byte of sound data. The sound data is orga-
nized as interleaved samples (if more then one channel) of either 8 or 16 [or 24] 
bit samples depending on the value of the ‘sample-size’ STR resource (see 
below). 

For example, a standard 16 bit stereo file would be organized as follows: 
Left Channel sample #1 
Right Channel sample #1 
Left Channel sample #2 
Right Channel sample #2 
Left Channel sample #3 
Right Channel sample #3 
etc... 

Audio Interchange Format (AIFF) 

Apple originally designed AIFF to be used for moving information between ap-

plications and platforms but thought it useful and flexible enough for use directly by an 

application. It’s based on a standard developed by Electronic Arts22. Only the Macintosh 

file system uses the two fork file type (data and resource) so all information is arranged 
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and stored in the data fork of this file type. The complete specification is available from 

Apple and many other sources. The design of the format is so clever and flexible that it’s 

worth study in itself. 

The file structure is based on a generic type called a chunk, which the documen-

tation describes with a C-like language thus: 

typedef char[4] ID; 
typedef struct { 
    ID  ckID;    // chunk ID 
    long  ckDataSize; // chunk Size 
    char  ckData[];  // data in variable sized array 
} Chunk;  
 

The member called ckID of type ID is a four-character code. This is convenient 

for humans and machines as four characters can be a useful abbreviation and a machine 

can read it as one native 32-bit value. The member called ckDataSize indicates the 

number of bytes in the array ckData. This size does not include the size of the members 

ckID and ckDataSize, which totals eight. The specification for a chunk can include 

other nested chunks and the chunk type can be unioned with any other structure of data 

the programmer wishes to code. Chunks can be in any order, so the first eight bytes need 

to be used as-is so a program can determine what the data is and how big it is, and calcu-

late where the next chunk starts (if not end-of-file). 

The AIFF file specification makes some alterations to this nested chunk system by 

defining a special outermost chunk called the form chunk or container chunk and uses the 

layout: 

typedef struct { 
    ID  ckID;   // always ‘FORM’ 
    long  ckSize;  // always size of file minus 8 
    ID  formType; // always either ‘AIFF’ or ‘AIFC’ 
    char  chunks []; 
} ContainerChunk; 
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The chunks member is where the list of other chunks and nested chunks are 

placed. The three required chunks are called the Version Chunk, the Common Chunk, 

and the Sound Data Chunk. Each have the four-character IDs of ‘FVER’, ‘COMM’ and 

‘SSND’ respectively, and can have only one of each. The Version Chunk was added on 

the change from the AIFF to AIFC type so that future changes could be made to the file 

structure without having to change the four-character file type code again (from AIFC to 

something else). Their structures look like this: 

typedef struct { 
  ID     ckID;   // ‘FVER’ for AIFC files 
  long    ckDataSize; // always 4  
  unsigned long timestamp; // 0xA2805140 (version as date) 
}FormatVersionChunk; 
 

for the version information, 

typedef struct { 
  ID     ckID;   // always ‘COMM’ 
  long    ckSize;  // always 18 for AIFF 
  short    numChannels; 
  unsigned long numSampleFrames; // == samples/channel 
  short    sampleSize; // bits per sample 
  extended   sampleRate; // roughly a 10 byte float 
  // below added for AIFC, makes struct variable sized 
  ID   compressionType; // registered 4-char code 
  pstring compressionName; // human-readable type name 
}CommonChunk; 
 

to hold the audio data format, and 

typedef struct { 
  ID     ckID;  // always ‘SSND’ 
  long    ckSize; // the size of soundData + 8 
  unsigned long offset; // rarely used... 
  unsigned long blockSize; // ...set to zero 
  unsigned char soundData[]; 
}SoundDataChunk; 
 

to hold the sound data itself. 

The sound data in the soundData member is in the same arrangement as the 

sound data in the “data fork” of the Sound Designer II file type above. Note that AIFF 



   

22 

stores the depth of each sample in bits where the Sound Designer II type uses bytes. If a 

non-multiple of eight bits is used for a sample zero bits are added on the right (LSBs) to 

pad it to the next 8-bit boundary. 

The file type AIFC extends the AIFF type to include compressed audio data23. A 

program needs to check the compression type ID in the new Common Chunk to see if it 

understands this compression type, if any. (The compression type could be set to 

‘none’.) Compression type codes should be registered with Apple to be sure there is no 

conflict with other codecs. 

Resource Interchange Format (WAVE) 

This format was created jointly by Microsoft Corporation and IBM Corporation, 

and is very similar to the AIFF format as it is also based on the original Electronic Arts 

Interchange File Format.24 The primary difference between this format and AIFF is that a 

WAVE file uses the Intel byte order and AIFF uses the Motorola byte order to represent 

numbers and audio samples. The four-character codes used to describe the different 

chunks are also different from the AIFF format and the structure and nesting of the vari-

ous chunks is different. 

The first four bytes of a WAVE file are ‘RIFF’ and stand for Resource Inter-

change File Format. The specification also has a file type of ‘RIFX’ where the bytes are 

stored in Motorola byte order. Then the next four bytes make an unsigned integer indi-

cating the number of bytes in the rest of the file. The WAVE “Format Chunk” corre-

sponds to the AIFF “Common Chunk,” and the WAVE “WAVE Data Chunk” corre-

sponds to the AIFF “Sound Data Chunk.” 
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ID3 

The ID3 tagging system is a standardized and flexible way of storing information 

about an audio file within itself to determine its origin and contents. The information may 

be technical information, such as equalization curves, as well as related meta information, 

such as title, performer, copyright etc.25 Use of these tags has become very common in 

files created by consumer music librarian programs like Apple’s iTunes. Professional 

software for creating MP3 files also often has fields for entering this additional informa-

tion. It was designed so that it could be added to any audio file and merely be ignored if 

the program reading the file doesn’t understand it. Even thought the AIFF file format al-

ready has space for textual information, ID3 tagging was added by creating an ID3 chunk 

type ‘ID3 ’ and placing all the ID3 tags there. 

ID3 tags are mentioned here because they are important additional information for 

identifying a file. This information occupies such a small percentage of the file that they 

do not need to be addressed as part of the compression. In fact, they should be left as is to 

help with further identifying the contents of a compressed file without decompressing or 

decoding first. 
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SLAC 

Audio Editing & The Shape of the Waveform 

The launch of cheaper, professional sound processing cards for personal comput-

ers in the early ’90’s was a tremendous advantage for smaller music and film production 

facilities, and for individual freelancers and hobbyists. Processing power and creative 

flexibility could now reach the hands of the average user. Professional quality audio here 

means that an audio channel, as an electrical signal, is sampled or measured 44,100 times 

a second and 16 bits is used to store each sample as a two’s complement, signed integer. 

This is still the format of the standard audio CD. Before that, digital audio in personal 

computers was typically sampled and stored in 8-bit samples (one byte per sample) taken 

at between 8000 and 22,000 times a second. 

From that point on, seeing the waveform of the audio signal by using software to 

access the card and manipulate the audio files was as common as—perhaps more com-

mon than—hearing the sound itself (see Figure 3). It was apparent immediately to this 

user that there was lots of white space above and below the peaks of the waveform, or 

zeros, used in representing a sound. An understanding of how audio is represented in 

digital form soon followed and with that a sense that there must be a better way to repre-

sent the data with storage requirements being so high. Figure 3 shows almost 1.5 mega-

bytes of data in its approximately 16 second length. 
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It became part of the sound editors’ wisdom to not bother compressing digital 

audio with off-the-shelf compression programs (such as StuffIt) as one would with other 

computer data when archiving or backing up a project. Space reductions of 50% are con-

sidered a typical average for most data, with text files reducing to as little as 10% of their 

original size. Sound files, on the other hand, typically only compressed to 95% of their 

original size… hardly worth the time to compress and decompress the file which were 

generally very large and time consuming to handle to begin with. 

It should be noted that that ratio of 95% was found in a casual test performed in 

1994 with StuffIt, a generally free compression program for the Macintosh computer 

platform. It can be seen in Appendix E that the compression ratios are better now. Also 

note that the current version of gzip is used in that table and it gives better results than 

StuffIt. 

Occasionally sound files would be examined with a hex-editor and patterns would 

be noticed in the data. Quite often every other byte was seen to be zero and these were 

noted to be quiet passages. This author’s casual study revealed that standard compression 

 
Figure 3. Portion of an audio file shown in audio 

editing software. 
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programs are tailored for text, thus the very small desirable results for text files, and not 

working as well on data where, for instance, every other byte could repeat. 

At the time, it was assumed that the values in an audio file were mostly random 

with some weighting to smaller magnitude numbers. But the values in an audio file aren’t 

random in their placement except for the sound of some disbursement of noise. As stated 

earlier, one sample of audio is generally closely related to the value next to it. An idea 

struck this author early on to transform the audio file by saving only the difference be-

tween pairs of samples, often called a delta-transform or difference engine. Applying 

StuffIt to this transformed file resulted in a compressed file that was about 70% of the 

original size (even better with gzip, see Appendix E). Later, the technique one author 

calls “delta encoding”26 was found and is often used as part of a signal compression 

algorithm. 

Class work for this degree introduced me to several computing concepts and algo-

rithms that otherwise would have been considered too difficult. Comp 222 Computer Or-

ganization introduced Huffman encoding and showed how it can be used to assign shorter 

bit patterns to more common symbols. This also encouraged me to look again at a Macin-

tosh ToolBox (system API) routine called PackBits, which does run-length encoding on a 

sequence of bytes (not bits as the name implies) to see if something could be done with 

that. 

By just looking at the bits in an audio stream, it was decided that beyond the most 

significant bits staying the same for a large number of samples, less significant bits 

seemed to change at random, or at best, there would not be enough weight given to a sub-

set of symbols to favor shorter strings of bits over longer ones. Study of others’ attempts 
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show that an audio signal or other signals can be manipulated to favor smaller values. 

Where this is good for symbol-by-symbol encoding, it also increases the length of a run 

of the same bit in the left columns, which kept run length encoding as a more favored 

approach for this author. For a while, doing something like a Huffman encoding had been 

set aside until research for this paper revealed that most of the algorithms use a version of 

Huffman encoding. 

After playing with some ideas in January of 2005 it was decided to “Google” for 

more information and a very good website was found where Robin Whittle27 and an-

other28 compare in great detail several lossless audio compression programs, several of 

which have source code available (FLAC, WavPack, Monky’s Audio, True Audio). 

Whittle made the original WAVE files he used for testing available on his web site so it 

was decided to also use those files in testing this algorithm. FLAC and WavPack were 

chosen for local testing. Reasonable comparisons can be made and conclusions drawn 

without repeating all of the tests with the other algorithms by extrapolating from the chart 

on Whittle’s web site. 

This approach 

Compression of digitized signals in general, whether lossy or lossless, takes ad-

vantage of the feature where one sample or one pixel is closely related to its neighbors. 

Suppose a signal has been digitized into signed 16-bit integers. We can visualize this as 

an array of bits where each row is a sample. Say there’s an array of samples starting at 

some value (see Table 1a with runs of 2, 4, and 8 in boxes) and count up one for each 

sample. Notice that starting on the right column we can see that the bits alternate every 

other row, then have run lengths of two in the second column, and have run lengths of 
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four in the third. You’ll notice that most of the columns are correlated; that is, they have 

the same value throughout. 

Notice this similar behavior in the short audio selection in Table 1b. The most sig-

nificant bits are on the left and the least on the right. The bits in a column, primarily the 

left, repeat vertically. Intuitively, it can be seen here that runs of zero-bits or one-bits in a 

column are very common, so simple run-length encoding would be the most appropriate 

to use. Quiet passages in the program material or even the space between peaks of a 

waveform have lots of repeats. (Table 1b shows data from a quiet passage.) 

The question becomes what is the best way to represent this data. Varying the 

number of columns examined at a time is considered. Each grouping requiring its own 

variation of the data structures. 

It was taken a priori to start with the bits examined in pairs: 16th & 15th column 

first (leftmost, most significant bit is the 16th), then the 14th & 13th, etc. Other quantities 

and combinations of bits should be examined and tested. Two at a time were chosen after 

much thought (not experimentation, see Table 4 on page 28) as it seemed to be the most 

efficient way to group information. 

 
 

(a) 

... 
0000001000111110 
0000001010001000 
0000001001101001 
0000001011010111 
0000001011011110 
0000001010110011 
0000001100001101 
0000001110001010 
0000001101110011 

... 
(b) 

Table 1. The numbers 160–168 (a) and excerpt from audio file (b), both in binary. 
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Research on this paper led to the discovery that SLAC’s method of examining the 

bits in a data set is similar to taking the bit-planes of an image. Different planes of bits in 

an image also show varying amount of correlation.29 SLAC could easily be adapted to the 

lossless compression of images too. 

The data types 

Standard types 

Over the decades, computers have had several groupings of bits used to represent 

some kind a symbol like a Roman character or an Arabic number, but now having a byte 

be eight bits as the core to represent one of these symbols is the standard. (The Unicode 

format has changed that, but this is a tangential issue.) From there grouping bytes in 

powers of two are used to create larger symbols. In the C programming language there is 

the “short integer” (or “short”, 16 bits) and “long integer” (or “long”, 32 bits). There’s 

also the “long long” at 64 bits in length that won’t be used here. 

Additions for audio files 

A convention for naming larger data types in audio files by Digidesign, Inc. will 

be used here. These types are variable in size, so these sizes are stored as part of a sound 

file to define what kind of data is stored and how it is to be interpreted. These terms are 

also used to define other sized pieces and types of data in various places such as audio 

CDs and electronic music keyboards. Clarity is needed here to avoid confusion with these 

similar uses of the same terms.30 

One slice or one instance of time of one channel of audio is called a “sample” and 

is typically one, two, or three bytes in size and interpreted as a signed integer in two’s 

complement form. Other types can be used for a sample such as floats and longs but if 
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used at all they are for storage as the hardware to convert an analog signal to digital is 

generally converting it to integers of no more than 24 bits. Older personal computer 

hardware typically used 8-bit samples, the CD (Compact Disk) uses 16-bit samples, and 

pro-audio workstations (typically) use 24-bit samples. 

A “frame” is one time-slice across all channels. Stereo, or two channels, will have 

2 samples per frame and quadraphonic sound would have four samples per frame. The 

channel specifications for film sound of “5.1” and “7.1” would need six and eight sam-

ples per frame, respectively. A “7.1” channel, 24-bit recording would need 24 bytes per 

frame. 

Data types for this algorithm 

Two more data types will be used in this algorithm: a “block” and a “chunk”. A 

block will be a maximum of 215 frames in size and will remain this size throughout a file 

except for the end of the file where the size of the last chunk is the number of frames in 

the file modulo the chunk size specified for the algorithm. The reason for 215 will be 

come apparent below. 

 
Table 2. Excerpt of audio bit stream with boxes around a byte, 

sample, and frame, respectively. 
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The chunk will be one to 65 bytes long (see Table 3). These are pieces of encoded 

audio, each chunk representing some variable amount of audio data. The names were 

chosen because a “block” seems to suggest a uniform size like a “concrete block” and a 

“chunk” suggests a variable size like a “chunk of chocolate”. This is a different use of the 

term “chunk” from the Electronic Arts specification used at the basis for the AIFF and 

WAVE file types. 

The chunk type is a union of three structures. In order to decode the data the first 

two bits of the byte are used to determine which of the following structures to use. Since 

the structures would never be used to indicate a run of zero, every value is offset by one 

like this: 

00000000 = 1 
00000001 = 2 
00000010 = 3 
00000011 = 4 
 

… etc. 

0x - Zero Repeat Chunk 

This structure is used to store the count where a run from 17 to 215 zero-bit pairs 

have been found in this pair of columns through this block of frames. The first bit of the 

chunk union being a zero, counting left to right, indicates the next 15 bits are to be used 

as the count of zero bit pairs: 

typedef struct zeroRepeat { 
 short usePattern:1; 
 
 
 short count:15; 
} zeroRepeat; // 0x 

typedef struct bitRepeat { 
 Byte usePattern:1; 
 Byte useLiteral:1; 
 Byte pattern:2; 
 Byte count:4; 
} bitRepeat; // 10 

typedef struct bitLiteral { 
 Byte usePattern:1; 
 Byte useLiteral:1; 
 
 Byte count:6; 
 Byte bits[64]; 
} bitLiteral; // 11 

Table 3. The three chunk structures shown without extended comments. 
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typedef struct zeroRepeat { 
 short usePattern:1; // must be 0 
 short count:15;  // 32768 possible values, or 2^15 
} zeroRepeat;    // size = 2 bytes 
 

This is quite common with quieter passages of sound. A “short” can be used instead of 

this structure as values of 215 or less (remember, values are offset by one) have the left 

most bit set to zero. 

10 - Bit Repeat Chunk 

A run of 4 or 5 to 16 bit pairs have been found in this pair of columns. (The “4 or 

5” is explained in “bit literal”.) This can be any of the four combinations of two bits, in-

cluding ‘00’. 

The first bit of the chunk union being a 1 means to use this pattern, a 0-bit in the 

second position means to repeat this pattern, and the third and fourth bits store the pattern 

itself. The last four bits make the repeat count (maximum 24). The bits of the pattern to 

repeat are stored where they are as they will have to be moved in most cases to be placed 

back into position on decoding. Then the last four bits representing the count don’t have 

to be shifted to be used; the other bits can just be masked off: 

typedef struct bitRepeat { 
 Byte usePattern:1; // must be 1 
 Byte useLiteral:1; // must be 0 
 Byte pattern:2;  // 00, 01, 10, 11 
 Byte count:4;   // 16 possible values, 2^4 
} bitRepeat;    // size = 1 byte 

11 - Bit Literal Chunk 

The run of 1 to 64 bytes are to be used as is, no repetitions. Ones in the first two 

bits of the chunk union indicate this storage type. The last six bits are used as the count (1 

to 26). Each byte will then hold the bit pairs in a pair of columns for four samples. A “re-

peat run” of four will be stored in a “bit literal” if we’re currently filling that data type 
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and it’s not already full rather than switch to another chunk type. Since each byte can 

store four pairs of bits, the number of samples represented can be as high as 256. This 

data type could potentially add 128 bytes to represent a pair of columns literally as op-

posed to storing this data with out any counting. 

typedef struct bitLiteral { 
 Byte usePattern:1; // must be 1 
 Byte useLiteral:1; // must be 1 
 Byte count:6;   // 64 possible values, 2^64 
 Byte bits[64];  // each stores 4 pairs of bits 
} bitLiteral;    // size range from 2 to 65 bytes 
 

Manipulating the Signal 

These are transformations to put similar patterns of bytes/bits next to each other in 

a recognizable pattern for run length encoding. Research is showing that the real trick to 

doing lossless audio compression is to do some kind of manipulation to skew the data 

into a form that lends itself to patterns that are meaningful to the known lossless com-

pression algorithms. 

Complement and Rotate 

It can be seen here a priori that runs of 0-bits in a column can be made to be by 

far the most common, so run-length encoding would be the most appropriate to use. It is 

easy to coerce the long runs of 1-bits in columns crossing negative sample values into 

zeros by taking the one’s-complement of all but the sign bit of those negative sample val-

ues, thus guaranteeing that quiet passages in the program material or even the space be-

tween peaks of a waveform will have lots of zeros (see Table 4). 

Taking the one’s-complement of a sample, except for the sign bit, keeps most of 

the upper bits from changing when there are only a few bits changing across zero, then 

left rotate by one. This puts the sign bit, which is about as active as the least significant 



   

34 

bits (LSBs) with the LSBs. Remember the signal is constantly changing and taking the 

running difference has the effect of hiding slow changing values leaving only the quickly 

changing values. 

Once a block of frames residual code has been found by some correlation algo-

rithm it may be desirable to find the maximum number of bits used in the samples. This 

number of bits can be encoded at the start of the output block, five bits give us a maxi-

mum of 32 values, rather than using up 16 bits for every pair of columns of zero bits. 

Correlation and Prediction 

Initially, only applying a delta transform was used in this algorithm. It’s easy to 

understand and runs very quickly. The difference between samples makes more of the 

numbers smaller. This could potentially add another bit, but this would only happen for 

sections with very loud (high amplitude) high frequency program material. The worst 

cases for CD audio could be 32,767 – (-32,768) = 65,535 and (-32,768) – 32,767 = 

-65,535 where each would take 17 bits to represent accurately. On the other hand this is 

Normal bit representation 
in excerpt of audio in file. 

 Same data with one’s-complement 
and rotate. 

 

 

 
Table 4. One’s-compliment except sign of negative values, then rotate. 
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very easy to calculate as simple subtraction of neighboring pairs of numbers is needed 

while encoding and addition while decoding. 

After some research WavPack was found to use, at its fastest setting, a slightly 

more involved equation. It’s still very fast and its results are given in Appendix E. The 

equation is the difference of the current value minus the last value (stopping here would 

be only taking the delta) plus the previous delta: 
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So, this means we are estimating that the current value will be as much different 

from the last value as the last value was different from the one before it. The algorithm 

performs the transform in place in memory by reading the buffer from the end to the be-

ginning, substituting zeros for the values when the index needs to extend before the 

beginning of the buffer. 

Correlation between the channels of a stereo pair must also be considered. Pri-

marily monophonic program material will be very similar in both channels and therefore 

considered to have redundant information. Resolving this requires taking the sum and the 

difference of the two channels. After processing, primarily monophonic material will be 

strong in the new sum channel, and the difference channel will be very quiet, therefore 

containing more and longer runs of zeros. Each block is tested to see if it needs to be left 

in LR (left-right) form or put in SD (sum-difference) form. Normal stereo files will either 

be unchanged or improve the compression possibilities by taking the SD of the audio file. 

Taking the SD will hurt the compression results for program material that is primarily 

heavy in one channel. 
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This could also potentially add another bit to the sample. This will happen for 

signals that go above ±215 in each of the channels for (16-bit samples). To return back to 

left and right channels, sum the data in SD for the left channel and take the difference for 

the right, the output must be divided by two which can be done quickly by an arithmetic 

bit-shift to the right. In these equations S is the sum signal, D is difference with 
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S = L + R, 

  

! 

D = L" R;  

so going back, 
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! 

R =
(L+R)"(L"R)

2
, 

which is shown with the original left and right substituted for S and D. 

Encoding 

Data is loaded in blocks of 215 frames because this is the maximum value that can 

be represented with 15 bits. Thus the maximum number of zero-bits in a column and the 

reason for the design of the “zero repeat” chunk type. Since each correlation transform 

can require another bit to properly represent the data, all samples are promoted to longs 

so as to not over flow the storage of those numbers. (Eight-bit samples need only be 

promoted to shorts, the next native type larger.) If, say the 17th and 18th bits remain zero 

in a 16-bit sample after the transforms the only cost is the time to count the pattern and 

two bytes in the output file representing that this column of bits is all zeros. The majority 

of values being smaller far outweigh the occasional value that needs more bits to be accu-

rately represented. 
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Next, one or more decorrelation algorithms are applied to the block and a flag is 

set in the output stream. Each block can have a different algorithm applied. Part of the 

analysis is to determine which algorithm or combinations of algorithms will produce the 

best results. The program tests if interchannel decorrelation is necessary. The decode step 

is faster as it only needs to choose the algorithm indicated by the flag. The last step be-

fore encoding is to one’s-complement each sample is and rotate it to put the sign bit on 

the right, as shown before in Table 4. 

It was also considered that this file type could be used for streaming audio, thus 

the need to identify the start of a new block without having to start at the beginning of the 

file. It was determined that three sequential zero bytes would never occur as part of the 

algorithm and this is used to signal the start of a block. It should be noted that streaming 

broadcasting software requires audio to be encoded at a constant bit rate, which this is 

not. 

For each block in the file, write three 0-bytes, then one byte with the correlation 

flags. Next save the size of the block (the last block might be short) as a short integer. 

Then for each pair of bit columns in the bit array, step through the entire block as indi-

cated starting with the second state in Figure 4. 

The working of the state machine in Figure 4 can be described like this: Scan for 

matching bits by marking where we are and grab a copy of the current pair of bits, then 

count the number of frames this pattern repeats in this pair of columns. If the repetition 

pattern is two zero-bits and there are more than 16 in a row, then save to the output file 

the count of zero-pairs in the “zero repeat” structure, which is the same as using a (posi-

tive) short integer. Runs of other bit patterns longer than 16 will have to be stored in 
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multiple “bit repeat” structures, but not if there are 17 to 19 in the count. This will be-

come clear below. 

Other than long runs of zero-bit-pairs, repetitions of any pattern of pairs of bits 

with counts of four or five to 16 will be stored in the “bit repeat” structure. If runs are 

longer than 16 a new “bit repeat” structure will need to be used. This structure will never 

be used to store counts of less than four. So if the count modulo 16 is less than four then 

that amount will be stored in the next data type. 

If the run is three or fewer, then four pairs of bits are copied from the next four 

frames using the “bit literal” structure. When the structure is full, or a scan indicates a 

different structure should be used next, it is written to the output buffer. Repeating pat-

terns of only four pairs of bits are also written to this structure—if it already exists—be-

cause switching to the “bit repeat” structure also only takes one byte giving no space ad-

vantage. It could also require the immediate restarting of the “bit literal” which has as 

much as an extra byte for every 8 bits saved, adding potentially 1/3 more to the size of 

the output than an unprocessed file, in the worst case. 

 
Figure 4. State diagram for encode algorithm. 
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Code for saving the “bit literal” structure needs to be just after the pattern count-

ing is done. If a run of three or fewer is found it’s either added to the existing “bit literal” 

structure or a new “bit literal” structure is set up. If there is a long enough repeating pat-

tern found and a “bit literal” structure is in use then that “bit literal” structure is saved to 

the output buffer before writing the count of the current pattern to the output file as a “bit 

repeat” or “zero repeat” structure. 

Decoding 

The compressed data can be read from the file in any size piece at a time. The cur-

rent Macintosh file system (this programmer’s system of choice) is most efficient if file 

reads are in 4k-byte chunks so the compressed file is read in multiples of that. The de-

coding of the data can proceed one byte at a time using the form of a state machine. The 

first two bits of each byte are used to determine to which state we advance. The current 

state is held in a variable that is tested by a switch-case construct. Not shown is a counter 

that returns the machine back to state one. The numbers in Figure 5 actually correspond 

to the byte number in the block we are examining. The transition labeled “10” goes back 

to the same state because the code to handle this condition is placed directly where it’s 

detected without changing the state variable. Actually changing states may be less 

confusing and may produce just as good compiled code given the current state of 

optimizing compilers. 

The frame counter is tested to see if that pair of columns in the bit array have been 

completely set for that block to indicate when we move to the next pair. When all the 

pairs of columns are done, the entire block is written to the output file and the state ma-
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chine is told to restart or exit depending on whether there is more data in the compressed 

file. 

The machine states are identified by what we are looking for, so at the very be-

ginning the state is set to “firstZero” as we are looking for the first zero byte of three that 

identifies the start of a block. When found it switches to the state “secondZero”. If not 

found it keeps looking (this could be a stream rather than the start of a file) by switching 

back to looking for the first zero-byte that will mark the start of a block. The next byte 

contains the flags for what correlation algorithms were used, then two bytes are used as 

the short integer that describes the length of the block and are copied to the frame size 

variable in the two states “blockLen1” and “blockLen2”. When that is done we set the 

state to “nextChunk” and start interpreting the chunks. 

Why is the length of a block read in two steps? This is because there is a chance 

that the first byte of the short integer may be the last byte in the input buffer filled from 

 
Figure 5. State diagram for decode algorithm. 
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the last time the compressed file was read. The algorithm needs to be prepared to wait for 

the input buffer to be refilled before reading the next byte. 

The state “nextChunk” signals we’re looking for the next chunk to interpret. Now, 

if the first bit is a zero—the byte masked to show only the first two bits be visible can 

have a 0x00 or 0x40—then we grab this byte as the high byte of a short and set the state 

to “zeroRep” to indicate we’re looking for the second byte of the zero-repeat structure. 

Once that’s found we switch back to “nextChunk”. 

While in “nextChunk”, if the first two bits are “10” (0x80) then the next two bits 

are saved as the pattern to repeat and that pattern is repeated the number of times saved in 

the last four bits. 

Lastly, if the first two bits are “11” (0xC0) then we put the last six bits into a 

counter to show how many of the next bytes to write out explicitly and switch to state 

“literalRun”. We stay in “literalRun” until the counter has been decremented to zero and 

we then switch back to “nextChunk”. 

The output buffer could be overrun when the bitLiteral structure is written to it. A 

non-multiple of four frames could have been counted by the zeroRepeat or the bitRepeat 

structures. So even if there’s only one literal pair of bits to write it will write four pairs. It 

is easier to code and faster running to declare a buffer with three extra frames at the end 

than to constantly check for the overrun. 

The state diagram is re-started by counters that are not shown or exited com-

pletely when the end of file flag is found by the function reading the file. 
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Storage format 

The file format for storage of the output of this algorithm is based on the AIFC 

file format. The file format also allows for any type of compression to be used and can be 

any standard type or new type. It’s up to an application as to whether it can handle that 

type or not. Meta data beyond sample rate, size, and number of channels can be copied in 

total to an AIFF style chunk. This prevents the need to understand the meaning of all the 

other metadata when coming from non-AIFF files. Of course if the original file is any 

type of AIFF or AIFC file then it makes sense to just copy all meta-data to the new file 

without change. Copying from the Sound Designer II format would require some special 

effort, as metadata is stored in the Macintosh resource fork. 
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Analysis 

One audio CD was chosen for testing because of its familiarity to the author and 

its variety of selections. It’s a demonstration CD put out by the company Brüel & Kjær in 

1989 to show off their brand of microphones. This author has used this CD extensively 

for subjective testing of other parts of audio systems. The album includes a variety of 

pop, jazz, and many classical selections, along with sound effects and test signals. It was 

found to be useful that all of the selections were recorded with microphones from the 

same manufacturer, all of which are either a small or large diaphragm model of the same 

design. Where musical and performance styles vary widely the sound quality remains 

consistent from cut to cut. 

The web site “Lossless audio compression”31 provided the inspiration to follow 

through with this lossless compression idea. On referring to it recently, it was discovered 

that Whittle had added the audio he’d used in his testing, making it available to download 

as WAVE files. This solved the problem of making comparisons to work he’d already 

done. Both sets of audio were used in testing as this writer wanted to see results on audio 

that he was familiar with and wanted to use data to make meaningful comparisons to 

Whittle’s work. Whittle’s web page also refers to test files which he did not include for 

download and the B&K CD has suitable selections on it. On that site Whittle gives a 

short description of his sound files including their source with reference numbers and 

average volume level. 

The time needed to process a file was timed with a shell script that was set up to 

step through them. Originally the intention was to use StuffIt instead of gzip to compare 

with this author’s previous experience of compression of digital audio. There is no com-
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mand line version of StuffIt and it was desired to keep the timing framework consistent 

between the tested algorithms. 

In the shell script in Table 5 the UNIX sed utility in the second line is there to 

change spaces into colons because the Macintosh file system allows file names with 

spaces and disallows colons, but a shell script’s “for” statement uses spaces as a delimiter 

between items to process and will break a path in the wrong place. The fourth line 

changes the colon back to a space so the desired process can find the named file. The 

script takes source and destination directory paths as parameters. Both SLAC and cp 

need source and destination parameters as they both either need a new name for the file 

or a destination directory. gzip options were used to create new files from the original 

sound files rather than deleting the originals. 

It was the desire of the writer to use open source algorithms since compiler opti-

mization could be made similar across all programs thus eliminating one variable in the 

behavior of the programs. Both FLAC and WavPack were compiled from source code on 

a 1.67GHz PowerBook running MacOS X 10.4.5 (gcc 4.01). The algorithms were run 

on that laptop with the sound files read from and written to the laptop’s internal hard 

#!/bin/sh 
for i in `ls "$1" | sed -e 's/ /:/g'` 
do 
  i=`echo $i | sed -e 's/:/ /g'` 
  echo $i 
  #time -p nice -n -20 cp "$1$i" "$2" 
  #time -p nice -n -20 gzip -c "$1$i" > "$2/$i.gz" 
  #time -p nice -n -20 gunzip "$1$i" 
  #time -p nice -n -20 slac "$1$i" "$2" 
  #time -p nice -n -20 slacd "$1$i" "$2" 
  #time -p nice -n -20 slacwp "$1$i" "$2" 
  #time -p nice -n -20 slac -d "$1$i" "$2" 
  #time -p nice -n -20 flac -0 --totally-silent "$1$i" 
  #time -p nice -n -20 flac -8 --totally-silent "$1$i" 
  #time -p nice -n -20 flac -d --totally-silent "$1$i" 
  #time -p nice -n -20 wavpack -f "$1$i" 
  #time -p nice -n -20 wavpack -h "$1$i" 
  time -p nice -n -20 wvunpack "$1$i" 
  echo "" 
done 

Table 5. Shell script used for testing. 
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drive. A working version of this author’s algorithm was also compiled with gcc so it 

could also be used in the same timing script as the other algorithms. Primary work and 

debugging was done in Metrowerks Codewarrior, but it’s not clear how well code op-

timization compares between Codewarrior and gcc, so gcc was used to keep down the 

possible variations. Macintosh ToolBox calls were adapted to the UNIX programming 

style rather than taking the time to rewrite them. 

Timing was found to be very inconsistent between runs of any of the algorithms, 

varying upwards of 20% from run to run. It was determined that the cause of this was the 

fact that the host OS is a preemptive multi-tasking OS that could interrupt the algorithm 

at any time for other housekeeping. The OS is also known to have algorithms that cache 

and optimize executables32 so one pass through the set of files was repeated in reverse 

order to check for that influence. Nothing beyond the earlier noted variation in processing 

time was noticed. 

Later tests were re-run with the UNIX utility called nice to give priority to the 

tested program. Negative numbers for the “-n” option mean to be less nice to other 

running programs, giving priority to the current program. The most stable performance 

from run to run was found when each program was given a “nice” value of -20 and the 

shell script executed from a new shell started with a “nice” value of -10: 

 sudo nice -n -10 sh 

with most performance time averages staying within 10% of each other. 

Table of results 

The results shown in Appendix E need some explanation. All files were in AIFF 

format with their sizes shown in bytes. The program cp is the UNIX utility to copy files. 
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It’s here to show the overhead a plain copy imposes. Time is always in seconds and every 

column labeled “encode” or “decode” is the time in seconds to encode or decode the file. 

The “t/M” column is the time normalized to process one minute of audio with this 

equation 

    

! 

n = t /(s /10584000) , 

where n is the normalized time, t is the total time to process on that file, and s is the 

original file’s unprocessed size. This size was chosen because half (or all, in the case of 

cp) of each process moves the original amount of data. The unlabeled columns after the 

“encode” and “decode” columns are the normalized times for those processes, too. 

The main column group titles are mostly self-explanatory. “Delta” refers to the 

delta transform. In the script in Table 5 the programs slac, slacd and slacwp 

correspond in the tables below to slac with no transforms, slac with delta, and slac 

with WavPack’s simplest decorrelation transform. The rest show their command line 

options, generally run twice using the fastest setting and then the strongest setting. The 

very last foreshortened columns are WavPack’s strongest option with the files done in 

reverse order to check the effect of the OS caching commands. 

Screen shots 

Since this approach to signal compression was discovered by visually looking at 

the shape of the signal, views familiar to sound editors are shown in Appendix A. 

Waveform 

The term “waveform” is used for a time versus amplitude view of  a sound file. 

The images here are screen shots of each selection of audio displayed in a ProTools 

“session” file. The x-axis is measured in time and is set to show the entire length of the 
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file no matter what the actual length of the file is. The timing marks were also captured 

for reference and perspective. It’s assumed from experience with this software that each 

screen pixel width is an average (not peak) of the signal’s positive values and average of 

its negative values for the length of time the pixel spans. 

Spectrum 

The term “spectrum” is used for a frequency versus amplitude view of a file. The 

spectrum for each file was taken over only about ten seconds of program material at what 

was thought to be a representative section of the whole file. The motivation for this was 

as a time saver and also knowing the utility taking the spectrum would show the 

maximum values, so only a section with a strong signal was needed. 

The software is a demonstration version of the Waves Audio Ltd. software plug-

in called “PAZ” and it was set to take RMS values. It is thought that as the RMS value 

for a signal is considered to more closely represent it’s perceived loudness33 and that this 

correlates to compression results. This is because a single peak in the signal could be con-

strued as being representative of the program material, but one loud peak in the signal 

would have little effect on the compression of an otherwise quiet passage. 

Stereo correlation 

This part of the Waves plug-in is a more elegant version of what audio engineers 

did by taking a feed of the left and right program material and connecting it to the y and x 

inputs, respectively, of an oscilloscope. Sensitivity was adjusted to show the typical 

“ball-of-string” pattern, depending on the program material, but typical for reverberant 

material. A vertical line indicates left-channel only program material and a horizontal line 

indicates right-channel only program material. Program material that is identical in both 
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channels is shown as a line with a slope of positive one. A well-rounded ball-of-string 

pattern means that the program’s material is well spread out in space and will seem to 

surround the listener. 

The plug-in modifies this in several aesthetic ways but the information is the 

same. First, it tilts the display so that monophonic or center panned program material ap-

pears as a vertical line. Left and right program material show as slopes of negative and 

positive one, respectively. The scale of the display has been made to be logarithmic rather 

than normal linear view on an oscilloscope. It also has a peak hold function and averages 

the signal causing it to look more like a spiked ball rather than a wad of string. 

In the following screen shots the vertical grey band in the images in the left col-

umn are a selected region of approximately ten seconds in length. This region was then 

used to generate the frequency response and stereo correlation images on the right. 
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Conclusion 

The results are encouraging but the open source programs work much better for 

compression. SLAC does seem to have the edge on speed, performing better than the 

otherwise faster program, WavPack, with the same correlation algorithm. The future 

experiments mentioned below seem to be warranted. 

Timing information was later gathered from the original Codewarrior compiled 

version of SLAC and was found to be comparable to the gcc compiled code. The effort 

to compile versions of the other algorithms locally in addition to SLAC may not have 

been necessary. 
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Future Experiments 

Possible Transforms 

Rather that just using delta encoding a more sophisticated approach could be 

used. It must be kept in mind that different transforms may add a bit or more to the 

resolution of the signal. 

Some other transforms include linear predictive coding, wavelets, and discrete co-

sine transform. All of these have floating point and integer versions. The literature con-

tains many and more sophisticated methods. Something simple may be more important 

than more data efficient algorithms as speed of processing is also a consideration when 

applying hardware to encode and decode the data. 

All techniques need to predict a value only from previous values, or at least in the 

same direction as they are decoded. This way a transformed value can be derived from 

known values. 

Pattern Matching 

A better way of applying a running difference or delta to the signal might be to 

recognize a fundamental (as in harmonic fundamental) frequency and subtract the previ-

ous cycle from the current. This is similar to the LZW algorithm except that an exact 

match shouldn’t be sought. It might be made to match all but the lower two or three bits 

and store a pointer to the pattern and the residual of the difference. The problems with 

this are determining what the fundamental frequency for a block is and in allowing for 

changes in that frequency. 
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Another possibility is to use a version of a dictionary method like LZW but again, 

to only match to within a few least-significant bits, then code the reference chunk and 

residual bits of the current set of symbols minus the reference chunk. 

Splines 

Several past points, or samples, can be used to determine a value based on spline 

curves. Earlier testing by this writer for splines to be used in decimation and interpolation 

algorithms showed that splines aren’t good at representing signals, but the idea is to get 

closer to the actual next value with the simplest possible calculations. One of the spline 

techniques may prove to deliver a small residual code with a minimum of calculations. 

Tunable Filter 

A block can be tested for its dominant frequency. Then a band-pass filter can be 

tuned to that frequency and its output used to predict the next value with the difference 

from the actual value being stored. It may be useful to pair this with the output of the 

delta engine. 

For that matter, a simple FFT (fast Fourier Transform) could be passed over a 

block of data and a handful of frequencies with their intensities could be encoded at the 

start of a block. This can be thought of as using a small amount of storage to indicate 

some redundancy. These frequencies are then used in the decorrelation step. 

1-bit slices 

In this first version of the algorithm it was assumed that the columns of bits would 

be best examined in pairs. The sign bit (most significant) is bit-rotated to the right (least 
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significant) position so it is grouped with bits that will be changing approximately as of-

ten, leaving the leftmost bits to be changing the least. 

After discovering the degree of importance that correlation is to the success of a 

lossless compression algorithm, and that there are many stronger algorithms than the 

delta transform, it seems that examining only one column of bits at a time may prove to 

be better. This would require only two structures and obviate the need of the rotate step in 

the complement and rotate step. While encoding, the algorithm can scan the sign bit col-

umn first and then continue on with the other columns in any order. 

The “zero repeat” chunk would be used as is—but, of course, it would be only re-

ferring to a run of one column in the bit array rather than two, and would continue to re-

fer to counts of 17 to 215 zeros. The other would be a modified version of the “bit literal” 

chunk. The first bit set to 1 would indicate that this structure is to be used and the next 

seven bits used to indicate the number of the next bytes to interpret literally. The structure 

would look like this: 

typedef struct bitLiteralOne { 
 Byte usePattern:1; // must be 1 
 Byte count:7;   // 128 possible values 
 Byte bits[64];  // each stores 8 bits from column 
} bitLiteral;    // size ranges from 2 to 129 bytes 
 

Now each instance of the new “bit literal” structure can hold twice the number of 

bits as the 2-bit “bit literal” structure. A situation where two entire columns of bits must 

be encoded literally would now only cause an extra 64 bytes to be inserted. This is an-

other thing that may make this structure better: output of the current encode algorithm 

using the two bit structure often has many consecutive “bit literals.” 
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Lossy compression 

A lossy form of this same algorithm could apply a certain amount of slew rate 

limiting, by limiting loud high frequency signals. This would let the running difference 

values stay smaller, but may be an objectionable form of data reduction. 

Even better, use the example set in WavPack where two files are generated after 

the encoding. One file can be used by itself as lossy playback, or with the proper decoder, 

play both files where the second contains the residual error information, thus recon-

structing the original signal completely. 

Lossless with Another Lossy 

As an experiment, convert a full fidelity, AIFF file to some lossy format. Then 

convert that small lossy file to a new AIFF file. Now subtract, sample by sample, the new 

transcoded AIFF file (with all its inaccuracies from passing through the lossy encoding) 

from the original file and call the new file the “residual” file. Next apply one of these 

compression techniques to the residual file. The combination of the sizes of the lossy file 

and the residual file may be the smallest lossless result yet. These two files could be 

woven together into one file. 
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Appendices 

A Screen shots 
 

  
00HI - choral, women’s voices 

  
01CE - solo cello, Bach suite 

  
02BE - orchestra symphony, multiple tempos, monophonic 
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03CC - orchestra ballet, loud and fast 

 

  
04SL - software synthesis 

  
05BM - club techno 

  
06EB - trance techno 
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07BI - rock, heavy beat 

 

  
08KY - pop, heavy beat 

  
09SR - Indian classical, sitar and tabla 

  
10SI - Indian classical, mandolin and mridangam 
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1 kHz t.b.v. calibration - left channel 

 

  
1 kHz t.b.v. calibration - right channel 

  
1/3 octave bands of pink noise - left channel 

  
1/3 octave bands of pink noise - right channel 
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A Passing Train In the Quiet Dutch Farmlands - with crossing bell 

 

  
Apparatus Musico-Organisticus, Toccata 1a - pipe organ 

  
Baiao Malandro - classical guitar duet 

  
Broadband Pink Noise - second half is out-of-phase 
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Capoeira (from Ciclo Nordestino No 3) - classical guitar duet, quiet and rhythmic 

 

  
Come Hither You That Love - quiet lute and soprano 

  
Concerto For 2 Trumpets & Strings, RV 537, C Major, Allegro - baroque  

  
Concerto No 2 in D major, Allegro - baroque flute, harpsichord, and strings 
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Everything's Gonna Be All Right - electric guitar and woman vocalist 

 

  
Hangin' On To The Good Times - light pop with male vocalist and heavy bass 

  
Lute Solo 

  
Martelo (from Ciclo Nordestino No. 1) - fast classical guitar duet 
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Nevermore (excerpt) - keyboard generated sampled piano, flute, and cello 

 

  
Northern Lights - quiet electric instruments and male vocalist 

  
Of Strange Lands and People, Scenes From Childhood, Op. 15 - gentle classical piano solo 

  
Sonata No 15 in D major, Op. 28 “Pastoral”, Scherzo-Allegro Vivace - dynamic classical piano solo 
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Symphony No 4, 4th Movement (excerpt) - quiet orchestra with female soloist 

 

  
Symphony No 8 (excerpt) - loud organ, choir, large orchestra; quiets and adds soloists 
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B Header for 2-bit scan 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
/* 
These are the structures used to gather 2 bits at a time. 
*/ 
 
#ifndef _H_RWlc2bit 
#define _H_RWlc2bit 
#pragma once 
 
const SInt32 chunkMult = 8 * 4096; // =32768, should be 4k aligned for best performance on OSX 
 
const SInt32 maxBlock = 32768;   // 2^15; This is the number used to govern the maximum size 
         //  of the "block". 
 
// All values are converted to a long int before examination. 
//const long columnMask = 0b00000000000000000000000000000011; 
const SInt32 columnMask = 3; 
const SInt32 maskSize = 2; 
 
#pragma options align=mac68k 
 
typedef struct zeroRepeat { 
 UInt16 usePattern:1; // 0 here means to use this whole structure (don't use pattern) 
 UInt16 count:15;  // amount to use '00'; 0 means one, 1 means two, 2 means three, etc., max=32768 
} zeroRepeat;    // Counts of <=16 will never be used. Those will fit in bitRepeat. 
 
typedef struct bitRepeat { 
 Byte  usePattern:1; // 1 here means to use this whole structure (use a pattern) 
 Byte  useLiteral:1; // 0 here means to use the next two bits as pattern 
 Byte  pattern:2;  // bit pattern to repeat; 00 01 10 11 
 Byte  count:4;   // amount to use pattern; 0 means one, 1 means two, 2 means three, etc., max=16 
} bitRepeat; 
 
//typedef struct bitLiteralData { 
// Byte  p1:2; 
// Byte  p2:2; 
// Byte  p3:2; 
//  Byte  p4:2; 
//} bitLiteralData;  // CAN'T USE IN STRUCT BELOW. Compiler pads struct boundary to even address!!!! 
 
typedef struct bitLiteral { 
 Byte  usePattern:1; // 1 here means to use this whole structure (must be a one, use pattern) 
 Byte  useLiteral:1; // 1 here means to use these next members (must be a one, spell out each literally) 
 Byte  count:6;   // number of literal bytes (4 pairs of bits); 0 means one, 1 means two, 2 means three, etc. 
 Byte  bits[64];  // up to 64 of these bytes, corresponding to pairs from 256 samples 
} bitLiteral; 
 
#pragma options align=reset 
 
// Flag definitions set true for correlating process applied to block. 
const char deltaFlag = 0x01 << 0; 
const char sumDifFlag = 0x01 << 1; 
const char wpFlag  = 0x01 << 2; 
const char anotherFlag = 0x01 << 3; 
// certainly more to come... 
 
#endif // _H_RWlc2bit 
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C Encode 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void 
RWlcEncode::Process ( FSSpec &inSrcSpec, FSSpec &inDestSpec ) 
{ 
 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 // set up source struct and open source file 
 SoundFile sourceFile ( inSrcSpec ); 
 sourceFile.Open(fsRdPerm); 
  
 // set up destination structure 
 SoundFile   destFile(inDestSpec); 
  
 // check for enough space on destination drive, 
 //      return with error if not (set flag)  
 FileInfoPB  srcInfo ( inSrcSpec ); 
 if ( !destFile.IsSpaceAvailable(srcInfo.GetSize() + 102400) ) // 100k free space 
 { 
  mDiskFull = true; 
  SysBeep(0); 
  return; 
 } 
  
 // create destination file, same type as source, with QuickTime Player as the creator 
 destFile.CreateAndOpen('TVOD', saveAsType, 
      sourceFile.SampleSize(), sourceFile.SampleRate(), sourceFile.Channels(), 'RWlc' ); 
  
 long sChans = sourceFile.Channels(); // copied out for readability 
  
#if TEXT_OUTPUT 
 unsigned long debugCount = 0; 
 unsigned long lastIndex = 0; 
 bool    bLitLastSaved = false; 
 unsigned long bLitDebugCount = 0; 
 char    theBitString[64]; 
  
 ofstream textFile; 
 textFile.open("RWlc.txt", ios::ate); 
#endif 
  
 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 // calculate buffer sizes for reading from sources and write to destination 
 SInt32 framesRead; 
 SInt8 *bufferIn = new SInt8[maxBlock * sourceFile.FrameSize()]; // does this automatically clear the space? 
 SInt32 *bufferLR = new SInt32[maxBlock * sChans]; 
 SInt32 *bufferSD = new SInt32[maxBlock * sChans]; 
  
 // Worst case says output buffer needs to be 65/64ths (+1.5%) of the input 
 //  plus 12.5% (per bit for 8-bit) for the correlating algorithms. 
 SInt32 outSize  = maxBlock * sourceFile.FrameSize() * 2; 
 Byte *bufferOut = new Byte[outSize]; 
  
 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 // while we can read one block of source data, run process, and write to file 
 while ( (framesRead = sourceFile.ReadFrames((void *)bufferIn, maxBlock)) != 0 ) 
 { 
#if TEXT_OUTPUT 
  textFile << "\nNew block started (#" << (SInt32)debugCount++ << ").\n"; 
#endif 
   
  SInt32 *bufferLong = bufferLR; // This will point to one of the above depending on the outcome of SumDiff. 
 
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
  // convert all to 32 bit ints (for now even 8-bit files which only need to be up converted to 16-bit) 
  //  This is to make room for any additional bit places generated by our correlation algorithms 
  //  20-bit samples have the right most 4 bits set to zero. Shift so the smallest magnitude is 1. 
  SInt32 sl; 
  SInt32 ib=0; 
  switch (sourceFile.SampleSize()) 
  { 
   case 8: 
   for(sl=0; sl<(framesRead * sChans); sl++) 
    bufferLong[sl] = bufferIn[sl]; 
   break; 
    
   case 16: 
   SInt16 *shortCast = (SInt16 *) bufferIn; 
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   for(sl=0; sl<(framesRead * sChans); sl++) 
    bufferLong[sl] = shortCast[sl]; 
   break; 
    
   case 20: 
   for(sl=0; sl<(framesRead * sChans); sl++) 
   { 
    // take the long pointed to by 'ib', then arithmetic shift to the right (keeps only the left 2.5 bytes) 
    bufferLong[sl] = *((SInt32 *)(bufferIn+ib)) >> 12; 
    ib += 3; 
   } 
   break; 
    
   case 24: 
   for(sl=0; sl<(framesRead * sChans); sl++) 
   { 
    // take the long pointed to by 'ib', then arithmetic shift to the right (keeps only the left 3 bytes) 
    bufferLong[sl] = *((SInt32 *)(bufferIn+ib)) >> 8; 
    ib += 3; 
   } 
   break; 
    
   default: 
   // some error report 
   break; 
  } 
   
  // This sets the number of bits to examine minus the size of the mask. 
  //  Each massaging of the stream adds a bit significance to each sample. 
  //  We don't need to examine all 32 bits of the temp buffer. The extra bits are just there to catch the overflow. 
  long maskLimit = sourceFile.SampleSize(); 
   
  // clear output buffer so bit-wise OR's work 
  for (SInt32 b=0; b<outSize; b+=8) 
   *(UInt64*)&bufferOut[b] = 0LL; // This could leave up to the last 3 bytes uncleared. 
   
   
  // put a 3 zero-byte marker for the start of the block, this pattern never occurs as part of the compression 
  //*(UInt32*)&bufferOut[0] = 0L; // Actually write 4 zeros. This insures the forth byte is cleared for the flags. 
  // this was cleared above. 
   
   
  ///////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
  // Correlating algorithms! 
   
  // take running difference on each channel 
//   for ( SInt32 d = (framesRead*sChans)-1; d >= sChans; d-- ) 
//    bufferLong[d] -= bufferLong[d-sChans]; 
//   bufferOut[3] |= deltaFlag; 
//   maskLimit++; 
   
  // difference from the last difference plus the last value (like wavpack 'fast') 
   for ( SInt32 d = (framesRead*sChans)-1; d >= sChans*2; d-- ) 
    bufferLong[d] -= (2*bufferLong[d-sChans]) - bufferLong[d-(sChans*2)]; 
   for ( SInt32 d = (sChans*2)-1; d >= sChans; d-- ) 
    bufferLong[d] -= bufferLong[d-sChans]; 
   bufferOut[3] |= wpFlag; 
   maskLimit++; 
   
  // Test the sum and difference of stereo files to see if taking this computation will shrink the files. 
   if ( sChans == 2 ) 
   { 
    //UInt64 magLR = 0, magSD = 0; 
     
    for ( UInt32 s = 0; s < framesRead * sChans; s += 2 ) 
    { 
     bufferSD[s]  = bufferLR[s] + bufferLR[s+1]; 
     bufferSD[s+1] = bufferLR[s] - bufferLR[s+1]; 
     magLR += bufferLR[s] < 0 ? -bufferLR[s]  : bufferLR[s]; 
     magLR += bufferLR[s+1] < 0 ? -bufferLR[s+1] : bufferLR[s+1]; 
     magSD += bufferSD[s] < 0 ? -bufferLR[s] : bufferLR[s]; 
     magSD += bufferSD[s+1] < 0 ? -bufferLR[s+1] : bufferLR[s+1]; 
    } 
     
    if (magSD < magLR) 
    { 
     bufferLong = bufferSD;  // change to point to data in bufferSD 
     bufferOut[3] |= sumDifFlag; 
     maskLimit++; 
    } 
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   } 
   
   
  //////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
  // Complement and rotate 
  for ( SInt32 cr = 0; cr < framesRead * sChans; cr++ ) 
   bufferLong[cr] = (bufferLong[cr] & 0x80000000) ? ~(bufferLong[cr] << 1) : bufferLong[cr] << 1; 
  // shift pads right bit with a 0, comp set it to 1 
  // This is the only transform that doesn't add another bit to the sample. 
   
  // Before starting to encode the data test to be sure the mask limit is not greater than 30. 
  if (maskLimit > 30) 
   throw (-1); 
   
  // put the size of the target block 
  *(SInt16*)&bufferOut[4] = framesRead-1; 
#if TEXT_OUTPUT 
  textFile << BitString(&bufferOut[0], 2, theBitString) << "\tBlock Size: " << framesRead << endl; 
#endif 
   
  long bOutIndex = 6; 
   
  // for each channel 
  for (long ch=0; ch<sChans; ch++ ) // for each channel 
  { 
#if TEXT_OUTPUT 
   textFile << "New channel started (" << (ch?"right":"left") << ").\n"; 
#endif 
   for ( SInt32 maskPosition = 0; maskPosition < maskLimit; maskPosition += maskSize ) 
   { 
#if TEXT_OUTPUT 
    textFile << "Mask position (" << maskPosition << ").\n"; 
#endif 
    SInt32 frmIndex = 0; // source sample index 
    UInt32 bitMask  = columnMask << maskPosition; 
     
    bitLiteral  bLit; 
    bLit.usePattern  = 1; // these two are always 1 for this data type 
    bLit.useLiteral  = 1; 
     
    bool  prevLiteralAvailable = false; // was last chunk a literal or one of the repeaters 
     
    bitRepeat bRep; 
    bRep.usePattern = 1; 
    bRep.useLiteral = 0; 
     
    //for (long bc=0; bc<64; bc++) 
    // bLit.bits[bc] = 0;  // set pattern to save to all zeros 
     
    ////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
    // scan these pairs of bits in all the samples of this channel 
    while ( frmIndex < framesRead ) 
    { 
     // grabbing 32 bits saves doing a bit shift at every compare 
     SInt32 firstSample = bufferLong[(frmIndex * sChans)+ch] & bitMask; 
     SInt32 pCount = 1; // pattern count (one found so far) 
      
     // check for repeating bits 
     while ( ((bufferLong[((frmIndex+pCount)*sChans)+ch] & bitMask) == firstSample) 
        && (pCount < framesRead-frmIndex) ) 
      pCount++; 
      
     // write out literal if we are switching to a repeater or if literal is full 
     if ( ((bLit.count == 63) || (pCount > 4)) && prevLiteralAvailable) 
     { 
      ::BlockMove(&bLit, &bufferOut[bOutIndex], bLit.count+2); 
#if TEXT_OUTPUT 
      textFile << BitString(&bufferOut[bOutIndex], 1, theBitString) << "\t\t" << bLit.count+1 << "\n"; 
      for (SInt32 tf=1; tf<bLit.count+2; tf++) 
       textFile << "\t" << BitString(&bufferOut[bOutIndex+tf], 1, theBitString) << "\n"; 
#endif 
      bOutIndex += (bLit.count+2); 
      prevLiteralAvailable = false; 
       
      //for (long bc=0; bc<64; bc++) 
      // bLit.bits[bc] = 0; // clear bLit space 
     } 
      
     // save the tally of bits in the proper (smallest) format 
     if (pCount > 16 && firstSample == 0) // only '00' can have more than 16 to a run 
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     { 
      *(SInt16*)&bufferOut[bOutIndex] = (SInt16) pCount-1; // same as zeroRepeat data type 
#if TEXT_OUTPUT 
      textFile << BitString(&bufferOut[bOutIndex], 2, theBitString) << "\t" << pCount << "\n"; 
#endif 
      bOutIndex += 2; 
      frmIndex += pCount; 
      pCount = 0; 
     } 
     else if ( pCount > 4 || (pCount==4 && !prevLiteralAvailable) ) 
     { 
      bRep.pattern = firstSample >> maskPosition; 
      pCount   = pCount>16 ? 16 : pCount; // limit run of pattern other than '00' to max 16 
      bRep.count  = pCount-1; 
       
      bufferOut[bOutIndex] = *((Byte*)&bRep); 
#if TEXT_OUTPUT 
      textFile << BitString(&bufferOut[bOutIndex], 1, theBitString) << "\t\t" << pCount << "\n"; 
#endif 
      bOutIndex++; 
      frmIndex += pCount; 
      pCount = 0; 
     } 
     else // else just save the next 4 literal pairs 
     { 
      if (prevLiteralAvailable) 
       bLit.count++; 
      else 
      { 
       bLit.count    = 0; 
       prevLiteralAvailable = true; 
      } 
       
      bLit.bits[bLit.count]  = (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition) << 6; 
      frmIndex++; 
      bLit.bits[bLit.count] |= (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition) << 4; 
      frmIndex++; 
      bLit.bits[bLit.count] |= (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition) << 2; 
      frmIndex++; 
      bLit.bits[bLit.count] |= (Byte)((bufferLong[(frmIndex*sChans)+ch] & bitMask) >> maskPosition); 
      frmIndex++; 
       
      pCount = 0; 
     } 
    } 
     
    if (prevLiteralAvailable) // copy remaining literal to output buffer 
    { 
     ::BlockMove(&bLit, &bufferOut[bOutIndex], bLit.count+2); 
#if TEXT_OUTPUT 
     textFile << BitString(&bufferOut[bOutIndex], 1, theBitString) << "\n"; 
     for (SInt32 tf=1; tf<bLit.count+2; tf++) 
      textFile << "\t" << BitString(&bufferOut[bOutIndex+tf], 1, theBitString) << "\n"; 
#endif 
     bOutIndex += (bLit.count+2); 
    } 
   } 
  } 
   
  destFile.PutBytes(bufferOut, bOutIndex); 
 } 
 destFile.UpdateHeader(sourceFile.GetFrameMarker()); // make the size the same as what we just read 
  
 delete bufferIn; 
 delete bufferLR; 
 delete bufferSD; 
 delete bufferOut; 
} 
 
#if TEXT_OUTPUT 
char* BitString(void *inData, unsigned long inSize, char *ioStr) // returns ioStr as a C string 
{ 
 Byte mask = 0b10000000; 
 Byte *inCast = (Byte *) inData; 
  
 for (unsigned long b = 0; b<inSize; b++) 
 { 
  for(unsigned long bt = 0; bt<8; bt++) 
  { 
   ioStr[(b*8)+bt] = (inCast[b] & (mask >> bt)) ? '1' : '0'; 
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  } 
 } 
 ioStr[inSize*8] = 0; 
 return ioStr; 
} 
#endif 
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D Decode 
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
void 
RWlcDecode::Process ( FSSpec &inSrcSpec, FSSpec &inDestSpec ) 
{ 
////////////////////////////////////////////////////////////////////////// file management /////////////////// 
 // set up source struct and open source file 
 SoundFile sourceFile ( inSrcSpec ); 
 sourceFile.Open(fsRdPerm); 
  
 // must be compressed with my algorithm 
 if (sourceFile.Format() != 'RWlc') 
 { 
  SysBeep(0); 
  return; 
 } 
  
 // set up destination class 
 SoundFile   destFile(inDestSpec); 
  
 // check for enough space on destination drive, 
 //      return with error if not (set flag)  
 FileInfoPB srcInfo ( inSrcSpec ); 
 if ( !destFile.IsSpaceAvailable(srcInfo.GetSize() + 102400) ) // 100k free space 
 { 
  mDiskFull = true; 
  SysBeep(0); 
  return; 
 } 
  
 // create destination file, same type as source, with QuickTime Player as the creator 
 destFile.CreateAndOpen('TVOD', saveAsType, sourceFile.SampleSize(), sourceFile.SampleRate(), sourceFile.Channels() ); 
  
//////////////////////////////////////////////////////////////////////// set up memory ///////////////////////// 
 // declare buffers and counters 
 SInt32 bytesRead; 
 SInt32 framesInBlock; 
  
 SInt32 sChans = sourceFile.Channels(); // copied out for readability 
  
 UInt8 *bufferIn = new UInt8[chunkMult]; 
 SInt32 *bufferLong = new SInt32[(chunkMult * sChans)+4];    // plus space for bitLiteral to write past end 
 SInt8 *bufferOut = new SInt8[chunkMult * sourceFile.FrameSize()]; 
  
 SInt32 zeroRepeatRun; 
 SInt32 literalCount; 
  
 // initialize values 
 SInt32 frmIndex  = 0; 
 states state  = firstZero; 
 SInt32  ch   = 0; 
 UInt8 correlation = 0; 
  
 for (SInt32 cl=0; cl<chunkMult * sChans; cl+=2) 
  *(SInt64*)&bufferLong[cl] = 0LL; 
  
 // the mask starts with the 2 bits on the right and moves left 
 UInt32 maskPosition; 
 UInt32 maskLimit; 
  
  
///////////////////////////////////////////////////////////////////////  start conversion ///////////////////// 
 // read source data, run process, and write to file 
 while ( (bytesRead = sourceFile.ReadBytes((void *)bufferIn, chunkMult)) != 0 ) // THIS COULD READ PAST THE AUDIO DATA 
 { 
  // for each byte in bufferIn 
  for ( SInt32 b=0; b<bytesRead; b++ ) 
  { 
   switch ( state ) 
   { 
    case firstZero: 
    if ( bufferIn[b] == 0 ) 
     state = secondZero; 
    // else still looking for firstZero, something was wrong 
    //  (ie. we're not at the start of a block for streaming) 
    break; 
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    case secondZero: 
    if ( bufferIn[b] == 0 ) 
     state = thirdZero; 
    else 
     state = firstZero; // if not, start over looking for first zero 
    break; 
     
     
    case thirdZero: 
    if ( bufferIn[b] == 0 ) 
     state = corrFlags; // we've found the three zero bytes, this is the start of a block 
    else 
     state = firstZero; // bad data, start looking for start of block again 
    break; 
     
     
    case corrFlags: 
    // copy correlation flags 
    correlation = bufferIn[b]; 
     
    // the mask starts with the 2 bits on the right and moves left 
    maskPosition = 0L; 
    maskLimit = destFile.SampleSize(); 
     
    // each correlation algorithm requires one more bit 
    for ( Byte m=0x01; m>0x00; m<<=1 ) 
     if (correlation & m) 
      maskLimit++; 
    state = blockLen1; 
    break; 
     
     
    case blockLen1: 
    framesInBlock = ((SInt32)bufferIn[b]) << 8;  // copy high-byte of short int (clears lower byte) 
    state = blockLen2; 
    break; 
     
     
    case blockLen2: 
    framesInBlock |= ((SInt32)bufferIn[b]);   // copy low-byte of short 
    framesInBlock++; // plus one to make up for offset 
    state = nextChunk; 
    break; 
     
     
    case nextChunk: 
    switch ( bufferIn[b] & 0b11000000 )    // view only top two bits 
    { 
     case 0b00000000: // 00 
     case 0b01000000: // 01 
     zeroRepeatRun = ((SInt32)bufferIn[b]) << 8; // copy high-byte of short 
     state = zeroRep; 
     break; 
      
     case 0b10000000: // 10, do run of pattern now 
     //for ( long p=0; p<=((bitRepeat*)&bufferIn[b])->count; p++ ) //  p<=count is same as p<count+1 
     SInt32 theBits = ((SInt32)(bufferIn[b] & 0b00110000) >> 4) << maskPosition; 
     for ( SInt32 p=0; p<=(bufferIn[b] & 0b00001111); p++ ) // p<=count is same as p<count+1 
     { 
      bufferLong[(frmIndex*sChans)+ch] |= theBits; 
      frmIndex++; 
     } 
      
     state = nextChunk; 
     break; 
      
     case 0b11000000: 
     literalCount = bufferIn[b] & 0b00111111;  // same as ((bitLiteral*)&bufferIn[b])->count 
     state = literalRun; 
     break; 
    } 
    break; 
     
     
    case zeroRep: 
    zeroRepeatRun |= ((SInt32)bufferIn[b]);   // copy low-byte of short 
    zeroRepeatRun++; 
    state = nextChunk; 
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    // we don't need to write the zeros, they're already there 
    // just move up the frame count 
    frmIndex += zeroRepeatRun; 
    break; 
     
     
    case literalRun: 
    // copy out literal data 
    bufferLong[(frmIndex*sChans)+ch] |= ((SInt32)( bufferIn[b]               >> 6)) << maskPosition; 
    frmIndex++; 
    bufferLong[(frmIndex*sChans)+ch] |= ((SInt32)((bufferIn[b] & 0b00110000) >> 4)) << maskPosition; 
    frmIndex++; 
    bufferLong[(frmIndex*sChans)+ch] |= ((SInt32)((bufferIn[b] & 0b00001100) >> 2)) << maskPosition; 
    frmIndex++; 
    bufferLong[(frmIndex*sChans)+ch] |= ((SInt32) (bufferIn[b] & 0b00000011)      ) << maskPosition; 
    frmIndex++; 
     
    if ( literalCount == 0 ) 
     state = nextChunk; 
    literalCount--; 
    break; 
   } 
    
    
   // test to change to new bit column 
   if ( frmIndex >= framesInBlock /*&& state != blockLen1*/) 
   { 
    frmIndex = 0; 
    maskPosition += maskSize; 
     
    // test for new channel 
    if ( maskPosition >= maskLimit ) 
    { 
     maskPosition = 0L; 
     ch++; 
      
     // If all channels are done then we're at the end of a block. 
     if ( ch >= sChans ) 
     { 
      ch = 0; 
       
      // Rotate and complement. 
      // if left most byte is a 1 then this will produce an error (bit?) 
      for ( SInt32 cr=0; cr<framesInBlock*sChans; cr++) 
       bufferLong[cr] = (bufferLong[cr] & 1L) ? ~(bufferLong[cr] >> 1) : bufferLong[cr] >> 1; 
       
      // Go through de-correlation algorithms in reverse order from the encoding. 
       
      // Sum-Diff (only for 2 channel signals [for now]). 
      if (correlation & sumDifFlag) 
      { 
       switch (sChans) 
       { 
        case 2: 
        // do process in place (same buffer) 
        for ( SInt32 sd=0; sd<framesInBlock*sChans; sd+=2) //  (s)um-(d)iff 
        { 
         SInt32 sum = bufferLong[sd]; 
         SInt32 diff = bufferLong[sd+1]; 
         bufferLong[sd] = (sum + diff) >> 1; // divide by 2 
         bufferLong[sd+1] = (sum - diff) >> 1; 
        } 
        break; 
         
        default: // other combinations of channels might be tried for 3 or more channels 
        break; 
       } 
      } 
       
      // Delta. 
      if (correlation & deltaFlag) 
       for ( SInt32 id=sChans; id<framesInBlock*sChans; id++) //  (i)ndex (d)elta 
        bufferLong[id] += bufferLong[id-sChans]; 
       
      SInt32 sl; 
      SInt32 ib=0; 
      switch (sourceFile.SampleSize()) 
      { 
       case 8: 
       for(sl=0; sl<(framesInBlock * sChans); sl++) 
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        bufferOut[sl] = bufferLong[sl]; 
       break; 
        
       case 16: 
       short *shortCast = (short *) bufferOut; 
       for(sl=0; sl<(framesInBlock * sChans); sl++) 
        shortCast[sl] = bufferLong[sl]; 
       break; 
        
       case 20: 
       for(sl=0; sl<(framesInBlock * sChans); sl++) 
       { 
        bufferLong[sl] <<= 4; 
        Byte *longByte = (Byte *) &bufferLong[sl]; 
        bufferOut[ib++] = longByte[1];  // zero, the high byte is not used 
        bufferOut[ib++] = longByte[2]; 
        bufferOut[ib++] = longByte[3]; 
       } 
       break; 
        
       case 24: 
       for(sl=0; sl<(framesInBlock * sChans); sl++) 
       { 
        Byte *longByte = (Byte *) &bufferLong[sl]; 
        bufferOut[ib++] = longByte[1];  // zero, the high byte is not used 
        bufferOut[ib++] = longByte[2]; 
        bufferOut[ib++] = longByte[3]; 
       } 
       break; 
        
       default: 
       // some error report 
       break; 
      } 
       
      destFile.WriteFrames(bufferOut, framesInBlock); 
       
      // clear buffer (write zeros) for next block 
      for (SInt32 cl=0; cl<chunkMult * sChans; cl+=2) 
       *(SInt64*)&bufferLong[cl] = 0LL; 
       
      state = firstZero; 
     } 
    } 
   } 
  } 
 } 
  
 delete bufferIn; 
 delete bufferLong; 
 delete bufferOut; 
} 
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E Results 

 
Table 6a. Results for cp, gzip only, and gzip with delta encoding. 

 

 
Table 6b. Results for SLAC with no decorrelation, and with delta encoding. 
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Table 6c. Results for SLAC with WavPack fast encoding and FLAC with option “-0”. 

 

 
Table 6d. Results for FLAC with option “-8” and WavPack fast setting. 

 



   

 78 

 
Table 6e. Results for WavPack high compression setting and files in reverse order. 

 


